

ADVANCED INSTITUTE FOR WILDLIFE CONSERVATION

(RESEARCH, TRAINING & EDUCATION)

VANDALUR, TAMIL NADU

A GUIDE TO THE MARINE MAMMALS OF TAMIL NADU

TAMIL NADU FOREST DEPARTMENT ADVANCED INSTITUTE FOR WILDLIFE CONSERVATION

A GUIDE TO THE MARINE MAMMALS OF TAMIL NADU

AIWC TEAM

Thiru. A. Udhayan, I.F.S.

Principal Chief Conservator of Forests & Director

Selvi. S. Senbagapriya, I.F.S.

Deputy Director (Administration)

Thiru. D. Eswaran

Deputy Director (Technical)

Dr. S. Siva Ranjani

Forest Veterinary Assistant Surgeon

Thiru. S. Selvakumar

Forest Range Officer

PROJECT TEAM

Dr. T. T. Shameer

Project Scientist

Mr. Madeswaran R

Project Associate II

The content in this report is the outcome of research funded by the Tamil Nadu

Biodiversity Conservation and Greening Project for Climate Change Responses

(TBGPCCR) 2023-24.

Published by Advanced Institute for Wildlife Conservation (AIWC) (Research,

Training & Education), Vandalur, Chennai - 600 048. Tamil Nadu, India.

Printed by:

RR Screens, Royapettah, Chennai.

© 2025, AIWC, Tamil Nadu Forest Department

Office of the PCCF & Director: 044-29372331.

For correspondence: aiwcrte@tn.gov.in

All rights reserved. No part of this book may be reproduced, distributed or

transmitted in any form or by any means, including photocopying or other

electronic or mechanical methods, without the publisher's prior written

permission. For permission requests, write to the publisher.

Citation

Madeswaran R, & Shameer T T, (2025). A Guide to the Marine Mammals of Tamil

Nadu, 2025. Project Completion Report. As part of Tamil Nadu Biodiversity

Conservation and Greening Project for Climate Change Response (TBGPCCR),

Advanced Institute for Wildlife Conservation (Research, Training and Education),

Vandalur. pp 1-156.

ACKNOWLEDGEMENT

We would like to express our heartfelt gratitude to the following for their invaluable contribution and support throughout the course of this report:

First and foremost, we would like to thank the Tamil Nadu Forest Department and the PCCF & Head of Forest Force, Tamil Nadu State for giving this opportunity.

Next we would like to thank the PCCF and Chief Project Director, Tamil Nadu Biodiversity Conservation and Greening Project for Climate Change Response (TBGPCCR) and the Japan International Cooperation Agency (JICA) for their generous funding and continued support, which made this report possible.

Thank you to all the Officers and Staff of the Project Management Unit, Tamil Nadu Biodiversity Conservation and Greening Project for Climate Change Response (TBGPCCR) for their contribution.

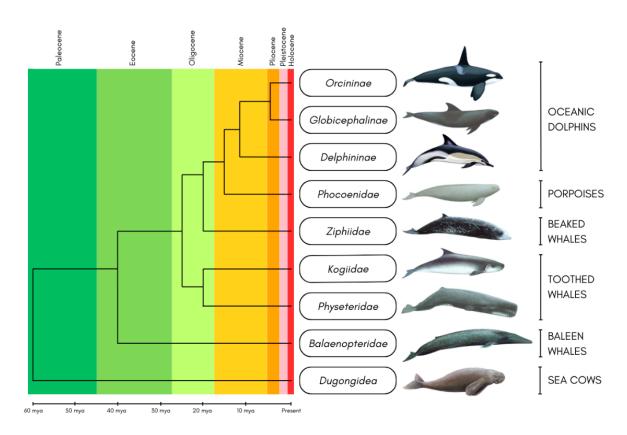
Finally, we would like to acknowledge all the AIWC personnel who contributed in various ways towards this effort. Their encouragement and assistance have been crucial for the project.

TABLE OF CONTENTS

I.	Introduction	1
II.	Details of the Marine Mammals of Tamil Nadu	5
III.	Description of the Marine Mammals of Tamil Nadu	
	A) Baleen Whales	8
	B) Beaked Whales	21
	C) Toothed Whales	24
	D) Oceanic Dolphins	33
	E) Porpoises	76
	F) Sirenians	79
IV.	Ambiguities on the Distribution of Certain Marine	
	Mammals in the Coastal and Marine Areas Of Tamil	82
	Nadu	
V.	Suggestions and Recommendations	89
VI.	Marine Conservation Frameworks: Global To	
	Regional	86
VII.	Comprehensive Guide to Marine Megafauna	91
	Stranding Response	7.1
VIII.	Overview of Marine Mammal Strandings and	95
	Sightings in Tamil Nadu (2020-2024)	
IX.	Data Collection Sources	104
X	References	105

EXECUTIVE SUMMARY

Tamil Nadu's coastal and marine waters are home to a diverse array of marine mammals, consisting of 24 species including baleen whales, toothed whales, oceanic dolphins, porpoises, and sirenians. Marine mammals occupy the highest trophic levels in their ecosystem and play a very crucial ecological role in both coastal and marine habitats, such as regulating prey populations, enhancing primary productivity, recycling nutrients, and serving as indicators of marine ecosystem health. As sentinel organisms, their status reflects broader environmental changes, including those driven by climate change, pollution, and habitat degradation. However, these marine mammals face mounting threats, primarily from human activities. Illegal hunting and poaching, bycatch and entanglement in fishing gear, ship strikes, habitat destruction, oceanic noise pollution, and plastic and chemical contamination are significant stressors that impact their populations and survival, further exacerbating conservation challenges.


Despite Tamil Nadu's rich marine biodiversity and strategic coastal location, research on its marine mammal populations remains limited, often relying on incidental strandings and opportunistic sightings. There is a need for systematic surveys and dedicated long-term monitoring programmes on marine biodiversity in Tamil Nadu. Bridging these gaps is essential for effective conservation planning, enhancements in species management, and legislative implementation. This document may serve as a comprehensive guide to the identification of marine mammals and its distribution in Tamil Nadu, their ecology, threats and conservation challenges. It aims to enhance species identification, and recognition of their habitat among forest and other relevant department officials, conservationists, researchers, students, and the general public. Additionally, the report outlines marine mammal stranding response protocols, to ensure better preparedness for live rescues and post-mortem examinations.

Understanding the ecological role of marine mammals is key for conservation measures. Strengthening policies for conservation, improving research activities, initiating various schemes, and increasing public awareness are essential to safeguard these marine species. Conservation efforts must extend beyond short-term goals and targets by integrating sustainable marine management practices and multifaceted, cross-sector collaborations. Moreover, by fostering scientific research with international cooperation and effective community participation, Tamil Nadu can become a pioneering state in marine mammal conservation within India.

I. INTRODUCTION

depend on the aquatic ecosystem for their sustenance. Though varied in shapes and sizes, all marine mammals rely on and sustain the marine environments in various ways. They are often wide-ranging from polar ice caps to tropical seas, and are found in diverse habitats, from shallow coastal waters to deep abysses (Marine Mammals: NOAA, 2018; Society for Marine Mammalogy, 2021; Parsons *et al.*, 2012).

Cetaceans, the group of fully aquatic marine mammals includes whales, dolphins, and porpoises, . Their closest living relative is the hippopotamus. The earliest known ancestor of whales, Pakicetus, appeared around 50 million years ago during the Eocene epoch. It was a terrestrial, wolf-sized mammal that likely waded in water.

A simplified, visual approximation of divergence patterns and broad evolutionary trends of Cetaceans and Sirenians (not a detailed phylogenetic reconstruction).

This lineage progressed through several key stages, such as Ambulocetus and Rodhocetus, eventually evolving into Basilosaurus, a fully aquatic whale with vestigial hind limbs. Approximately 35 to 40 million years ago, cetaceans diverged into two main groups: Mysticeti (baleen whales) and Odontoceti (toothed whales). Mysticeti, which includes species like blue and humpback whales, developed filter-feeding structures known as baleen, while Odontoceti retained teeth and developed echolocation (Thewissen *et al.*, 2009; Gatesy *et al.*, 2013; Lambert *et al.*, 2018).

Odonocetes experienced further divergences along the way. Beaked whales (family Ziphiidae) split from Odontoceti around 20–25 million years ago, known for their deep-diving capabilities and elusive nature, having evolved specialised adaptations for prolonged underwater excursions. Oceanic dolphins (family Delphinidae) emerged around 11-15 million years ago and are now the most diverse cetaceans. Porpoises (family Phocoenidae) diverged from other odontocetes around 15–17 million years ago. They evolved separately from dolphins but share many similarities; they tend to be smaller and have distinct tooth structures (Barnes, 1985; Thewissen et al., 2009; Gatesy et al., 2013; McGowen et al., 2020).

Meanwhile, sirenians, or sea cows, are large, herbivorous marine mammals that include dugongs and manatees. They evolved separately from cetaceans and are the only herbivorous marine mammals, sharing a common ancestor with elephants around 60 million years ago. The earliest sirenian, Prorastomus, appeared approximately 50 million years ago as a semi-aquatic wading mammal, with dugongs and manatees diverging around 30 million years ago. Both sirenians and early cetaceans trace their origins to a common ancestor with terrestrial herbivores and carnivores, with sirenians evolving into fully aquatic forms before cetaceans (Domning, 2001).

Marine mammals health and integrity of marine ecosystems ecological such as nutrient recycling, affecting prey population sizes, facilitating bioturbation, and maintaining functional biodiversity (Watson & Estes, 2011; Bowen, 1997; Roman *et al.*, 2014; Kiszka *et al.*, 2015; Albouy *et al.*, 2017; Sergio *et al.*, 2008; Katona & Whitehead, 1988). Research has also indicated that marine mammals serve as 'sentinels' of the marine ecosystem. climate change moving at an unprecedented rate, temperatures are increasing globally, causing glaciers to retreat and sea levels to rise. Plant and animal species that depend on the marine ecosystem would be the first to face adverse effects (Boyd *et al.*, 2009). As megafauna that are high in the trophic level, marine mammals serve as prime sentinel species for assessing environmental stressors caused by climate change (Bossart, 2011; Moore, 2008).

Apart from their vitality to the ocean's biodiversity, they also hold special cultural and economic significance (Mowat, 2006). ost notably cetaceans dolphins and whales as "charismatic species" because they captivate the public, attract media attention, and engage political interest (Bossart, 2011; Hoyt, 2012). Tourism based on marine mammals, such as whale watching, is a million-dollar industry raking in money while providing the chance for people to be educated about these animals (Hoyt, 2001; O'Connor *et al.*, 2009).

However, marine mammals encounter a variety of threats that endanger their survival the health of the ecosystems. Because of their distribution, many marine mammals are known to be impacted by various anthropogenic activities such as incidental bycatch in fishing, hunting, poaching, collision with aquatic transport, oil and mineral extraction, exposure to pollutants and pathogens, and underwater noise (Avila *et al.*, 2018; Gales *et al.*, 2003; Helm *et al.*, 2014; Parsons *et al.*, 2012). Such stressors harm the animals, impacting their conservation status and placing the species or the population at risk of potential extinction (IUCN, 2024). These threats could operate at both the population level and the individual level. Anthropogenic threats such as direct hunting, incidental bycatch and entanglement in fishing gear or marine debris, vehicle collision and pathogenic infection are prevalent individual stressors (Clapham & Baker, 2018; Read *et al.*, 2006; Baulch & Perry, 2014; Van Waerebeek *et al.*, 2007; Van Bressem *et al.*, 2015). Other stressors such

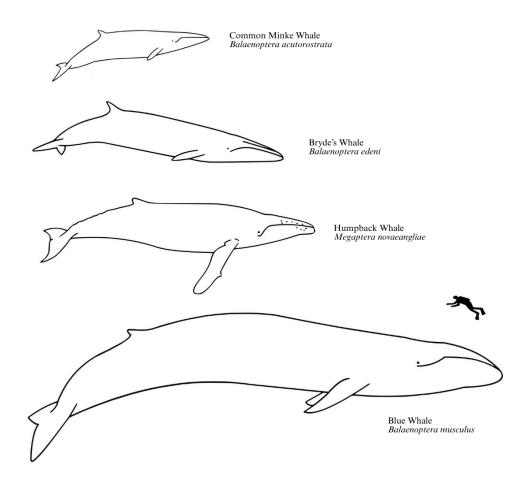
as tourism, acoustic pollution, coastal erosion and depletion of feeding grounds, bioaccumulation of pollutants, and oceanographic changes due to climate change affect entire populations (Kaschner *et al.*, 2011; Desforges *et al.*, 2016; *et al.*, 2002; Weilgart, 2007; Avila *et al.*, 2015).

Tamil Nadu has the second longest coastline of 1076 km after Gujarat with 14 districts sharing the coastline namely Thiruvallur, Chennai, Chengalpattu, Villupuram, Cuddalore, Mayildathurai, Nagapattinam, Tiruvarur, Thanjavur, Pudukottai, Ramanathapuram, Thoothukudi, Tirunelveli, and Kanyakumari (Climate Change Information Portal, Anna University). The state boasts a rich variety of marine ecosystems along its coastlines, which include gulfs, bays, beaches, straits, headlands, estuaries, inlets, marshlands, and offshore islands (Theenadhayalan *et al.*, 2012; Rajan *et al.*, 2019). Nearly 47% of Tamil Nadu's human population resides among the coastal districts, agriculture and fishing as their primary income sources (Nambi & Bahinipati, 2012). As with any coastal and marine ecosystem, the ones along Tamil Nadu's coastalso fac several issues threatening the survival andwell-being of the resident marine species.

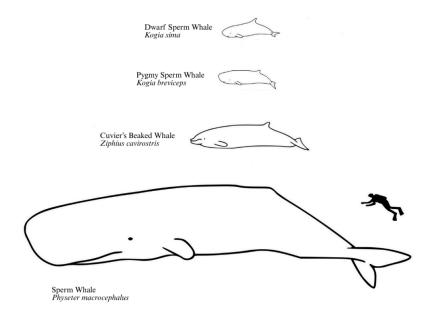
Marine mammals inhabit all coastal regions lining Tamil Nadu, namely along the southern Bay of Bengal and the northern Indian Ocean regions (Kannan & Rajagopalan, 2013). However, strandings of many species – such as Bryde's whales, blue whales, sperm whales, dwarf sperm whales, humpback dolphins, bottlenose dolphins, spinner dolphins, finless porpoises, and dugongs – have become increasingly frequent and concerning (Sudhan *et al.*, 2017; Ramachandran, 2001; Nammalwar *et al.*, 1994; Sadhukhan *et al.*, 2022; Balaji & Sekar, 2021). This rise in strandings is primarily attributed to factors such as overfishing, habitat destruction, entanglement in fishing gear, boat strikes, and incidental bycatch. Additionally, the disposal of sewage and industrial effluents, along with hunting, poaching, and illegal trade, also play significant roles in endangering these marine species (Balaji & Sekar, 2021; Thomas et al., 2022).

publications in India have increased over the past decades. However, documentations are based on opportunistic sightings or occasional stranding, typically limited to morphometric measurements and photographs (Nelms *et al.*, 2021). The establishment of the Indian Ocean Cetacean Sanctuary in 1979 by the International Whaling Commission provided impetus for cetacean research in the region (Leatherwood & Donovan, 1991). However, compared to neighbouring Sri Lanka, extensive marine monitoring and survey(Leatherwood & Reeves, 1989). Given Tamil Nadu's strategic location and substantial coastline that houses biodiversity hotspots like the Gulf of Mannar giving more importance to systematic oceanic surveys in this region would help fill critical knowledge gaps in marine mammal research and conservation (Kumaran, 2002).

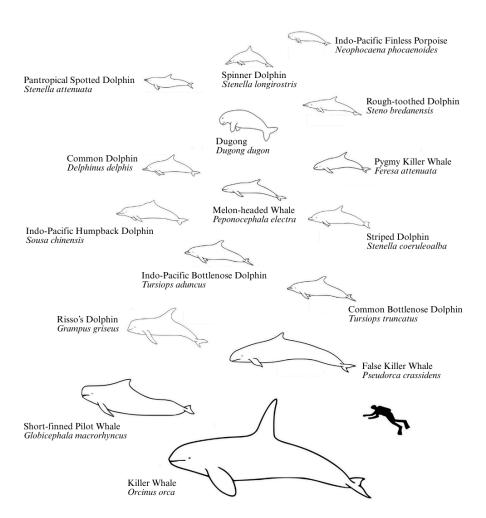
The complex challenges threatening marine mammals demand a comprehensive range of conservation strategies, with local awareness and knowledge being fundamental prerequisites. reportspresentand discuss the. will serve as for formulating forsser-report.


II. DETAILS OF THE MARINE MAMMALS OF TAMIL NADU

The list of species their below:


S.NO.	SCIENTIFIC NAME	COMMON NAME	IUCN Red List*	CITES Appendix	WPA, 1972 Schedule
A) BA	LEEN WHALE		•		
1.	Balaenoptera acutorostrata	Common Minke Whale	LC	I	I
2.	Balaenoptera edeni	Bryde's Whale	LC	I	I
3.	Balaenoptera musculus	Blue Whale	EN	I	I
4.	Megaptera novaeangliae	Humpback Whale	LC	I	I
B) BE	AKED WHALE				
5.	Ziphius cavirostris	Cuvier's Beaked Whale	LC	II	II
C) TO	OTHED WHALES				
6.	Kogia breviceps	Pygmy Sperm Whale	LC	II	I
7.	Kogia sima	Dwarf Sperm Whale	LC	II	I
8.	Physeter macrocephalus	Sperm Whale	VU	I	I
D) OC	EANIC DOLPHINS				
9.	Delphinus delphis	Common Dolphin	LC	II	II
10.	Feresa attenuata	Pygmy Killer Whale	LC	II	I
11.	Globicephala macrorhynchus	Short-finned Pilot Whale	LC	II	I
12.	Grampus griseus	Risso's Dolphin	LC	II	I
13.	Orcinus orca	Killer Whale	DD	II	I
14.	Peponocephala electra	Melon-headed Whale	LC	II	I
15.	Pseudorca crassidens	False Killer Whale	NT	II	I
16.	Sousa chinensis	Indo-Pacific Humpback Dolphin	VU	I	I
17.	Stenella attenuata	Pantropical Spotted Dolphin	LC	II	I

18.	Stenella coeruleoalba	Striped Dolphin	LC	II	I		
19.	Stenella longirostris	Spinner Dolphin	LC	II	I		
20.	Steno bredanensis	Rough-toothed Dolphin	LC	II	I		
21.	Tursiops aduncus	Indo-Pacific Bottlenose Dolphin	NT	II	I		
22.	Tursiops truncatus	Common Bottlenose Dolphin	LC	II	I		
E) PORPOISES							
23.	Neophocaena phocaenoides	Indo-Pacific Finless Porpoise	VU	I	I		
F) SIRENIANS							
24.	Dugong dugon	Dugong	VU	I	I		


^{*} LC – Least Concern; NT – Near Threatened; VU – Vulnerable; EN – Endangered; DD – Data Deficient

Scaled silhouettes of baleen whales of Tamil Nadu, illustrating comparative body lengths (Original vectors by Chris Huh, some rights reserved <u>CC BY-SA 3.0</u>).

Scaled silhouettes of toothed and beaked whales of Tamil Nadu, illustrating comparative body lengths (Original vectors by Chris Huh, some rights reserved <u>CC BY-SA 3.0</u>).

III. DESCRIPTION OF THE MARINE MAMMALS OF TAMIL NADU

A) BALEEN WHALES

1. COMMON MINKE WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea

Family : Balaenopteridae Genus : Balaenoptera Species : B. acutorostrata

Lacépède, 1804

Common Tamil Name: மின்கே திமிங்கலம்

Key Identification Features:

- The head is flattened with a narrow, pointed, triangular snout.
- The upper side is black, dark grey, or grey.
- The flippers are slender with a distinct white band.
- There are 30 to 70 throat grooves extending to the navel.
- The underside is white or pale grey.
- The dorsal fin is curved and pointed.
- The tail flukes are black on top and pale underneath with a definite median notch.

General Ecology:

Common minke whales, or northern minke whales (Balaenoptera

acutorostrata Lacépède, 1804), are rorqual whales, a family of baleen whales characterised by pleated throat grooves that expand during feeding.

© Oregon State University, some rights reserved (CC BY-SA 2.0)

Global distribution range of Common Minke Whale (*Balaenoptera acutorostrata*). Source: IUCN Red List Assessment (2012).

It is the smallest of the rorquals and the second smallest baleen whale species. A distinct "dwarf" population also exists in the southern hemisphere. The average

common minke whale grows around 7-9 m. The dwarf minke whale is on average about 2 m shorter than the common minke whale. Common minke whales have a fragmented distribution, inhabiting both coastal and offshore waters, and they exploit a variety of prey species depending on availability in different areas. They are known to feed on anchovy, krill, squid, sand eels, and capelin, among others (Perrin et al., 2018). All minke whales are preyed upon by killer whales and tend to flee at high speeds to evade them (Ford et al., 2005). The seemingly dispersed distribution of minke whales outside the summer feeding season may be an adaptation to the predation pressure from killer whales (Ford & Reeves, 2008). Initially overlooked by whalers due to their small size and low oil yield, minke whales began to be hunted by various countries in the early 20th century. As other species declined, larger numbers of common minke whales were caught, primarily for their meat (Ole Øen, 2021). Today, they are one of the main targets of the whaling industry.

Distribution:

common minke whale cosmopolitan species found in all oceans and nearly all latitudes, ranging from approximately 70°S to 80°N. It is present in the North Atlantic, the North Pacific, throughout the Southern Hemisphere, and in the northern Indian Ocean. At least some populations migrate to lower latitudes during winter, although there are known areas of regular winter aggregation (Cooke, 2018), except at the northern Great Barrier Reef in Australia, where dwarf minke whales gather in winter (Mangott et al., 2011). There has been considerable confusion in identifying and confirming stranded minke whales, with many being misidentified as the similar-looking Bryde's whale (Brownell *et al.*, 2017). The species can be difficult to spot at sea unless conditions are fairly calm, but it is possible to detect its presence acoustically due to the confirmed identification of certain underwater sounds made by this species (Martin *et al.*, 2013). Nevertheless, there have been few records of minke whales in the northern Indian Ocean (Rao, 1991; MMRCNI) and Tamil Nadu (Kasinathan, 2000).

Global Threats:

- 1. Whaling and Hunting Commercial whaling remains a significant threat to common minke whales. In northeastern Atlantic. intensive whaling from 1940 to 1983 reduced their population by about half. Although phased out in the late 1980s, whaling resumed at reduced levels in Norwegian waters in 1992 and Icelandic waters in 2002, initially under scientific permits (IWC, 2018a). In the North Pacific, whaling by vessels peaked in the mid-1970s and was phased out during the 1980s with the International Convention's moratorium on commercial whaling. However, it resumed in 1994 under a scientific permit issued by Japan. Since 2014, active whaling has been limited to coastal operations off Japan's Pacific coast. Catches have continued off the coasts of Japan and Korea, and possibly China (IWC, 2018b).
- 2. Fishing Gear Entanglement Outside of the western North Pacific
 region, reported entanglements of
 minke whales in fishing gear of
 various types (set nets, gillnets, trap

nets, trawls, and longlines) are few in relation to the apparent overall abundance of the species (Hayes *et al.*, 2019). Nonetheless entanglement in fishing gears have been reported in Canada (Perkins & Beamish, 1979), United States (Heyning & Lewis, 1990), Scotland (Northridge 2010), Italy, Portugal, France, Senegal, Canary Islands, Tunisia, and Brazil (Van Waerebeek *et al.*, 1999).

3. Ship Strikes - Ship strikes are another source of mortality for minke whales, although reports are few, as most incidents likely go undetected or unreported (Hayes et al., 2019). Ship strikes have been documented off the east coast of the United States, in the Gulf of St. Lawrence, and off Italy (Laist et al., 2001). In New South Wales, a dwarf inke whale calf stranded with one of its flukes cut by a propeller, which was likely the cause of its stranding and subsequent death Waerebeek et al.,

2. BRYDE'S WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea

Family : Balaenopteridae Genus : Balaenoptera

Species : B. edeni

Anderson, 1879

Key Identification Features:

- The body is a smoky grey colour.
- It has a slender, deeply curved dorsal fin.
- Three parallel ridges run from the paired blowhole to the tip of the snout.
- The whale has 40 to 70 throat grooves that extend all the way to the umbilicus.
- Its flippers are small, slender, and pointed.
- The underside of the whale is pale.
- The tail flukes are black on top and pale underneath.

General Ecology:

Bryde's whales (Balaenoptera edeni Anderson, 1879) are a group of rorqual whales. They are also called the Bryde's whale complex due to the taxonomy of Bryde's whales remaining complex and debated. While historically considered a single species, current official classifications by the Society of Marine Mammalogy and International Whaling Commission recognise the scientific name B. edeni, with two subspecies: the larger, oceanic B. e. brydei and the smaller, coastal

B. e. edeni. Bryde's whales' ecology differs among the population.

© Luis P. B., some rights reserved (CC BY-NC 4.0)

Global distribution range of Bryde's Whale (*Balaenoptera edeni*). Source: IUCN Red List Assessment (2017).

Bryde's whales are medium- sized, with the females generally larger than males throughout life, and are believed to reach a maximum of 15 m (Kato & Perrin, 2018). South African residents fed mainly on anchovy, pilchard, mackerel, krill, and lanternfish (Best, 1977) while the South Pacific and Indian Oceans fed solely on krill and anchovy (Kawamura, 1977; Ohsumi, Watanabe *et al.*, 2012). 1977: Bryde's whales caught in the Arabian Sea fed mainly mackerel. sardines on and (Mikhalev, 2000). The social structure of Bryde's whales is relatively straightforward,

with individuals generally being solitary or occurring in small groups of two to three animals (Best, 1977; Anderson, 2005). Though they may aggregate temporarily in feeding areas, these gatherings are characterised by loose social bonds (Kato & Perrin, 2018).

Distribution:

Due to unresolved taxonomy and difficulty in visual identification at sea, the geographic ranges of different Bryde's whale forms remain uncertain. The larger form, B. e. brydei, occurs between 40°N and 40°S in waters typically warmer than 20°C (Omura, 1959; Sasaki et al., 2013). Winter migrations are documented in the south-eastern Atlantic and north-western Pacific populations (Best 2001, Kanda et al., 2007).

Bryde's Whale (*Balaenoptera edeni*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

In the Indian Ocean, they are found north of 35°S, including the Maldives (Anderson, and north-western regions, 2005) by Soviet whaling records evidenced (Mikhalev, 2000). They are also found in colder waters off western South Africa and northward off Cameroon (Best, 2001). The smaller, coastal B. e. edeni is confirmed to be present in Oman and Bangladesh (Kershaw et al., 2013). The holotype specimen originates from Myanmar's Gulf Martaban (Anderson, 1879), with specimens from Bangladesh additional (Andrews, 1918) and Indonesia (Junge, 1950). There have been periodic sightings in the general vicinity of the Gulf of Mannar and Bay of Bengal (de Silva, 1987) and also been recorded instances of Bryde's whales stranding along the coasts of Tamil Nadu, specifically in Dhanushkodi (Lal Mohan, 1992), Palk Strait (Ramachandran, 2001), Point Calimere (Sathasivam, 2002), and Thoothukudi (Sudhan et al., 2017).

Global Threats:

1. Whaling - Bryde's whales were not a primary target for commercial whalers until the 1970s, when other whale populations declined (NOAA Fisheries: Bryde's Whale). Whaling for Bryde's whales began in Japan in 1906, with over 20,000 caught in the western North Pacific between 1911 and 1987. They were hunted by Japanese, Soviet, and Taiwanese fleets, and in the Philippines from the 1940s to the 1980s. A mid-1990s assessment indicated a 49% population decline in the western North Pacific from 1911 to 1996. Norwegian factory ships caught 34 Bryde's whales off Baja California between 1924 and 1929 (Tønnessen & Johnson, 1982). Thousands were also hunted off Peru, Chile, South Africa, and Brazil, with many incidentally caught during sei whale whaling (Cooke & Brownell, 2018). Between 1911 and 1987, more than 30,000 Bryde's whales were caught, including over 1,400 taken by Soviet whalers in the Southern Hemisphere between 1948 and 1973 though only 19 of these were officially reported (Berzin, 2008). Bryde's whales inhabit the northern Indian Ocean (Arabian Sea and Bay of Bengal), but no population estimates exist. Over 1,000 were taken illegally by Soviet operations in the Arabian Sea during the 1960s (Mikhalev, 2000). Pelagic whaling in the North Pacific was suspended in 1980 following the International Whaling Commission ban but resumed under special permits from 2000 to 2016 (Allison, 2017).

2. Ship Strikes - Bryde's whales are vulnerable to vessel strikes, particularly in coastal areas with heavy traffic. They are the third most reported species struck by vessels in the southern hemisphere, but records of such incidents are generally rare and underreported across their (NOAA Fisheries: Bryde's Whale). In the Hauraki Gulf off New Zealand, vessel strikes were frequently reported, averaging 0.9 whales per year between 1994 and 2014, posing a concern for the small local subpopulation (Constantine et al., 2015). However, no collisions were reported in 2016-17, possibly due to successful voluntary measures to avoid such incidents. The small, isolated subpopulation in the northeastern Gulf of Mexico may be threatened by vessel traffic, commercial fishing, and oil and gas activities (Soldevilla et al., 2017, Corkeron et al., 2017).

3. BLUE WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea

Family : Balaenopteridae
Genus : Balaenoptera
Species : B. musculus
Linnaeus, 1758

Common Tamil Name: நீலத் திமிங்கலம்

Key Identification Features:

- They have mottled skin with a greyish-blue colouration.
- They possess a broad, flattened U-shaped head.
- A raised splash guard is present in front of their blowholes.
- Their throat grooves are dark-coloured and range from 60 to 88 in number.
- They have long, slender flippers with pointed tips.
- The dorsal fin of a blue whale is relatively small.
- Their tail stock is thick, with massive and slender tail flukes.

General Ecology:

Blue whales (*Balaenoptera musculus* Linnaeus, 1758) are rorqual whales, measuring 20-30 metres and weighing over 150 tonnes, making them the largest known animals in Earth's history. subspecies: *B. m. musculus*, *B. m. intermedia*, *B. m. brevicauda* (pygmy blue whale), and *B. m.*

© NOAA Photo Library, some rights reserved (CC BY-2.0)

Global distribution range of Blue Whale (*Balaenoptera musculus*). Source: IUCN Red List Assessment (2012).

ypically solitary occasionally form pairs or small groups. They undergo long migrations between summer polar feeding grounds and equatorial breeding waters in winter (NOAA Fisheries: Blue Whale). Whilst most blue whales feed exclusively on krill (Sears & Perrin, 2009), the northern Indian Ocean subspecies (*B. m. indica*) has a more varied diet, including sergestid shrimp, fish, cephalopods, and jellyfish (de Vos *et al.*, 2018). Killer whales *Orcinus orca*are their sole natural predators, though the frequency of successful attacks remains unknown (Sears, 1990). Blue whales are renowned for

producing some of the loudest and lowest-frequency vocalisations (Oliver, 2020), exhibiting distinct variations among different populations (McDonald *et al.*, 2006).

Distribution:

Blue whales have a cosmopolitan distribution across all major oceans (Branch *et al.*, 2007). The northern Indian Ocean subspecies (*B. m. indica*) is distinctive, remaining in tropical waters year-round, unlike other populations that undertake polar migrations (Andersen *et al.*, 2012).

Blue Whale (*Balaenoptera musculus*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

The Arabian Sea hosts a resident population, reproductively isolated due to unique monsoon-driven productivity patterns (Ballance & Pitman, 1998; Reeves *et al.*, 2013). Recent acoustic monitoring has documented blue whale vocalizations off the Lakshadweep islands (Panicker &

Stafford, 2021). Regular sightings occur off the southern coast, particularly around Dondra Head and Trincomalee (de Vos et al., 2014), with significant populations inhabiting Maldivian waters during the northeast monsoon (Andersen et al., 2012) and the coast of Oman (Cerchio et al., 2020). N the Gulf of Mannar and Palk Bay regions (Vivekanandan & Jeyabaskaran, 2012; Afsal et al., 2008), blue whale presence correlates with the seasonal upwelling during the northeast monsoon (Sutaria et al., 2016). Most records comprise stranding and occasional sightings (Sathasivam, 2000). vstematic comprehensive studies on blue whales limited compared to Sri Lankan.

Global Threats:

- 1. Whaling Initially, blue whales were difficult to hunt due to their size and speed (Oliver, 2020). Regular hunting became feasible with deck-mounted harpoon cannons in the modern era (Darby, 2009). Modern hunting began in the North Atlantic in 1868, spreading to other areas after the local population was depleted (Tønnessen and Johnsen 1982). Peak catching occurred from the early 1900s to the late 1930s (Sears & Perrin, 2009). Whaling largely ceased in the 1960s-1970s, and blue whales have been legally protected since 1966 by the IWC (Allison, 2017); however, the Soviet Union continued illegal hunting into the 1970s (Ivashchenko et al., 2011).
- 2. Ship Strikes The southern coast of Sri Lanka is one of the world's busiest shipping lanes (Priyadarshana *et al.*, 2016), and it also happens to be a blue whale calving ground. This area off southern Sri Lanka is particularly vulnerable to ship strikes, as evidenced

by direct observations and strandings showing blunt trauma (Ilangakoon, 2012; de Vos et al., 2016). Injured whales have been observed to have impaired swimming abilities (IWC, 2018b). Between 2010-2012, at least 11 struck whales were bv ships (Priyadarshana et al., 2015), with two more in 2014 (Randage et al., 2014). On the west coast of North America, nine whale deaths from 2007-2013 and eight out of 21 blue whale carcasses found off California from 1988-2007 were linked to ship strikes (Carretta et al., 2017; Berman-Kowalewski et al., 2010). These incidents indicate that ship strikes significantly contribute to blue whale mortality (Rockwood et al., 2017).

- 3. Incidental Bycatches Incidental bycatches of blue whales in fisheries are rare (Sears & Perrin, 2018). Very few cases have been reported, such as those in the northeastern Pacific in 2015 and another in the Gulf of Saint Lawrence in 2002 (NOAA, 2018). In cold waters, blue whales often bear marks or scars from ice contact, complicating the identification of scars from fishing gear (Cooke, 2018). In Sri Lanka, a blue whale was observed with a net entangled through its mouth, along its body, and wrapped around its tail (de Vos, 2015).
- 4. Anthropogenic Noise Increasing anthropogenic noise from marine exploration (shipping/mining) affects blue whale behaviour. Studies show that blue whales alter their vocalizations during seismic surveys, calling more on exploration days (Di Iorio & Clark, 2010). Mid-frequency active sonar impacts their diving behaviour. In the Southern California Bight, whales reduced calling in the presence of sonar

(Melcón *et al.*, 2012). Deep or non-feeding whales were the most affected, while surface feeders were the least impacted. Sonar exposure led to disruptions like termination of feeding, changes in diving behaviour, and horizontal avoidance of the sound source (Southall *et al.*, 2019; Goldbogen *et al.*, 2013).

4. HUMPBACK WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla
Infraorder : Cetacea

Family : Balaenopteridae

Genus : Megaptera

Species : M. novaeangliae

Borowski, 1781

Common Tamil Name: கூன்முதுகு திமிங்கலம்

Key Identification Features:

- Body is primarily black with varying white patches on flippers, belly, and tail flukes.
- Paired blowholes with a splashguard and tubercles on its snout and lower jaw.
- Has 14-24 throat grooves that extend slightly beyond the navel.
- Flippers are long, reaching up to 1/3rd of body length, with knobs on leading edges.
- The dorsal fin can be a small triangle or sharply hooked, creating the whale's signature humped shape.
- Broad, serrated tail flukes, with a median notch and unique black and white patterns specific to each individual.

General Ecology:

Humpback whales (*Megaptera novaeangliae* Borowski, 1781) are the sole species in the genus *Megaptera*, distinguished by their long pectoral fins and tubercles on its head. Records indicate that adults range about 16-17 metres although 14

to 15 metres is more typical, with females typically 1-1.5 metres longer than males (Clapham, 2018).

© Charles J. Sharp, some rights reserved (<u>CC BY-SA</u> 4.0)

Global distribution range of Humpback Whale (*Megaptera novaeangliae*). Source: IUCN Red List Assessment (2012).

These whales undertake extensive migrations up to 16,000 km annually, feeding in polar waters and breeding in tropical or subtropical regions (Mann, 2000). They are generalist feeders, primarily consuming krill and small fish (like herring, capelin and mackerel) using bubble-net feeding techniques (Clapham, 2018). Killer whales are their main natural predators, with the calves most targeted (Jefferson *et al.*, 1991; Mehta *et al.*, 2007). Their bodies commonly host barnacles and whale lice

(Rowntree, 1996). Humpbacks are typically seen in small groups, though larger aggregations form during feeding and male competition for females (Clapham, 1996). They are known for their surface activities, including breaching, lobtailing, peduncle throws, behaviours that may serve as communication and parasite removal (Clapham, 2018; Kavanagh et al., 2017). These characteristics make them popular with whale watchers (Hoyt, 2009). Males produce complex songs lasting 5-30 minutes mating. social interaction. navigation (Payne & McVay, 1971; Tyack, 1981; Au & Hastings, 2008). Historically targeted by the whaling industry to near extinction, their numbers are now partially recovering worldwide (Tønnessen Johnsen, 1982; Fleming & Jackson, 2011).

Distribution:

The humpback whale is a cosmopolitan species found in all major ocean basins. All except the Arabian Sea populations, subpopulation, migrate between tropical breeding grounds and productive colder-water feeding areas (Dawbin, 1966; Clapham & Mead, 1999). In the North Pacific, researchers have identified at least four breeding populations: off Mexico, Central America, the Hawaiian Islands, and the waters around Okinawa and the Philippines (Baker al.1998; Calambokidis et al., 2008). The Southern Hemisphere exhibits a more complex structure, with seven recognised breeding stocks across three ocean basins: the southwestern and southeastern Atlantic, the southwestern and southeastern Ocean, the southwestern and southeastern Pacific, and Oceania (Bettridge et al., A unique year-round resident 2015). population exists in the Arabian Sea, ranging from Yemen to Sri Lanka (Minton et al., 2011), and is genetically isolated from other populations (Pomilla et al., 2014). Humpback whales are rare in the northeastern Indian Ocean and Bay of Bengal, with only occasional strandings (Sutaria 2018) and acoustic detections (Madhusudhana et al., 2019) along the west coast.

Humpback Whale (*Megaptera novaeangliae*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

Global Threats:

1. Whaling - Humpback whales have been hunted since the late 16th century (Cooke, 2018), initially targeted due to their coastal distribution (Clapham, 2018). During the 19th century, American whalers operated in the tropical breeding grounds of the North Pacific (Townsend, 2014; Mackintosh, 1965) with devastating Approximately 28,000 kills in the North

- Pacific (Humpback Whale Recovery Team, 1991) and over 200,000 in the Southern Hemisphere (Clapham Baker, 2002) were recorded. The North Atlantic population plummeted approximately 700 individuals, with the global population dropping to just 5,000 by 1966 (Baker et al., 1994). The Soviet Union killed over 48,000 (Yablokov, 1997), with 25,000 taken in just two seasons (1959-61) (Mikhalev, 2000). The IWC banned commercial hunting in 1966, though limited indigenous hunting is allowed in Bequia (Humpback Whale Recovery Team, 1991) and Greenland (Huntington et al., 2021).
- 2. Fishing Gear **Entanglement** Humpback whales face a critical threat from entanglement in fishing gear worldwide. Studies reveal significant mortality rates across different regions: the US West Coast experiences 16.7 deaths annually from entanglement, while the East Coast reports 7.2 such incidents (Carretta et al., 2018; Hayes et al., 2017). IWC reports from 2018 documented 78 entanglement cases in the USA, 46 in Australia, and numerous others globally (Hughes, 2018). In the Arabian Sea, 30-40% of photographed whales show entanglement scars, with their distribution overlapping fisheries (Minton et al., 2011). Research in the Eastern North Atlantic indicates that at least 24.8% of humpback whales in Icelandic waters bear evidence of prior entanglement (Basran et al., 2019). Most entanglements are likely to go undetected, making the true impact challenging to assess.
- **3. Ship Strikes -** Ship strikes represent another significant threat to humpback whales across multiple marine regions. Annual mortality data from US waters

- show 2.1 deaths on the West Coast, 1.8 on the East Coast, and 4.4 in Alaska/Hawaii from vessel collisions (Muto *et al.*, 2017). International reports in 2018 documented 13 ship strike incidents in the USA, 5 in Australia, and 1 in Brazil (Hughes, 2018). While ship strikes are a known hazard for large whales, their impact varies by region, for instance in European waters the threat appears relatively minor, although documentation is limited.
- 4. Noise Pollution Underwater noise pollution presents a complex threat to humpback whales. Various human activities, including seismic surveys, pile driving, dredging, drilling, underwater explosions, and military sonar, can cause significant acoustic disturbance (Nowacek et al., 2007; Weilgart 2007). Historical evidence suggests severe impacts: in the 19th century, two humpback whales were found dead near sub-bottom blasting sites, displaying traumatic ear injuries (Ketten et al., 1993). Additionally, whale-watching activities. while providing economic and educational benefits, have the potential to cause short-term and potentially long-term disturbances to whale populations, though the specific impacts remain context-dependent (Scheidat et al., 2004; Senigaglia et al., 2016).
- **5. Marine Debris and Microplastics -** As filter feeders, humpback whales are particularly vulnerable to marine debris, especially microplastics. Research suggests that a humpback whale consuming 1.5% of its body weight in krill and zooplankton daily could ingest over 300,000 microplastic particles (Desforges *et al.*, 2015). Examination of a humpback whale stranded in the

Netherlands revealed the presence of microplastics in its intestines tracts (Besseling *et al.*, 2015).

B) BEAKED WHALE

5. CUVIER'S BEAKED WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla
Infraorder : Cetacea

Family : Ziphiidae Genus : Ziphius

Species : Z. cavirostris

G. Cuvier, 1823

Key Identification Features:

- Body colouration ranges from dark grey to reddish brown, with a lighter underside.
- Most individuals display visible scarring, likely from intraspecific interactions.
- The head is predominantly white, particularly in older males, with a blunt, stubby beak.
- Adult males possess a distinctive pair of large, forward-pointing tusk-like teeth.
- A slightly upturned jawline creates a characteristic 'smiling' appearance.
- Flippers are small and rounded, with edges curving to meet the body.
- A small, curved triangular dorsal fin is positioned approximately 2/3rd down the back.
- Large, well-defined tail flukes are rounded at the tips, with or without a median notch.

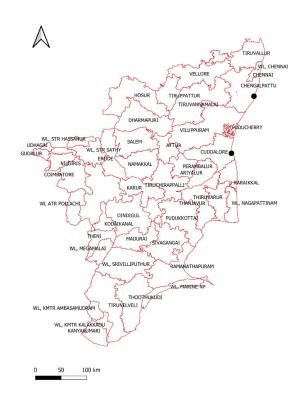
General Ecology:

Cuvier's beaked whales (*Ziphius cavirostris* G. Cuvier, 1823), also called the

goose-beaked whale, are the most widely distributed beaked whale.

© Charlotte Kirchner, some rights reserved (CC BY-4.0)

Global distribution range of Cuvier's Beaked Whale (*Ziphius cavirostris*). Source: IUCN Red List Assessment (2012).


They are a pelagic species inhabiting deep offshore waters beyond 300 meters. There is no significant difference in total length between sexes, with an average adult size of 6-6.5 m (Heyning & Mead, 2009). Resembling a stocky bottlenose dolphin, these cetaceans are renowned for executing extraordinary deep dives, with recorded depths of 2,992 m and durations of up to 222 minutes (Schorr *et al.*, 2014; Quick *et*

al., 2020). Preferring steep slope habitats like submarine canyons, they typically inhabit waters deeper than 1,000 meters environments various marine across (D'Amico et al., 2003; MacLeod et al., 2003). Their diet comprises deep-sea squid, supplemented by fish and crustaceans, which they hunt near the seafloor and in the water column (Heyning & Mead, 2009; MacLeod et al., 2003). Socially enigmatic, they are usually observed in small groups of 2-7 individuals, often solitary. Mediterranean studies consistently show mean group sizes between 1.6 and 2.5 individuals (Cañadas & Notarbartolo di Sciara, 2018; Ballardini et al., 2005), reflecting their elusive and mysterious behavioural patterns.

Distribution:

Cuvier's beaked whales have a cosmopolitan distribution in deep, offshore waters from tropical to cool temperate seas (Heyning & Mead, 2009). Their range covers marine waters worldwide, excluding shallow areas and high-latitude polar regions. inhabit the North Pacific, North Atlantic, and Southern Hemisphere, including regions like the Aleutians, Atlantic Canada, South American archipelago, and New Zealand. Semi-enclosed seas such as the Gulf of California, the Gulf of Mexico, and the Mediterranean are also part of their habitat. The Mediterranean population may be genetically distinct from North Atlantic populations (Holcer et al., 2014). The global population is estimated at over 100,000, with approximately 80,000 in the eastern tropical Pacific (Baird et al., 2020). There occasional stranding along the Indian coasts, namely in Gujarat (MMRCNI), Maharashtra (Chatterjee, 2019), Karnataka (Naik et al., 2015), Tamil Nadu (Oppili, 2016), West Bengal (Chakraborty

Mukherjee, 2021), and Lakshadweep (Pillai *et al.*, 1981). However, their elusive lifestyle makes it difficult to assess their population status in the northern Indian Ocean.

Cuvier's Beaked Whale (*Ziphius cavirostris*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

Global Threats:

1. Underwater Noise Threats - Military sonars and high-energy anthropogenic sounds significantly threaten Cuvier's beaked whales worldwide. Numerous atypical mass strandings have been directly linked to naval sonar and seismic exploration activities (Frantzis, 1998; Jepson et al., 2003; Fernández et al., 2005; Podestà et al., 2006). These acoustic disturbances can cause chronic and acute tissue damage, potentially resulting from decompression sickness due to gas bubble formation (Jepson et Particularly vulnerable al., 2003). regions include the Mediterranean,

Canary Islands, and the Bahamas, where naval exercises have precipitated multiple stranding events. Geophysical surveys using airguns for oil and gas exploration further compound this acoustic threat, especially in deep-water habitats (Podestà *et al.*, 2016, Cañadas & Notarbartolo, 2018).

2. Bycatch and Fisheries Interactions -Although not a primary target of commercial whaling, Cuvier's beaked whales have experienced incidental in various captures fisheries Documented bycatch includes California/Oregon drift gillnet fishery. reported 22-44 mortalities which annually between 19921995 (Julian & Beeson, 1998). Mediterranean fisheries, swordfish and particularly driftnet operations, have also reported occasional entanglements (Notarbartolo di Sciara, 1990). While the introduction of pingers in some fisheries has reduced bycatch (Carretta et al., 2008), the species remains vulnerable to accidental entanglement, particularly in regions with intensive maritime activities.

3. Marine Debris and Contaminants -

Cuvier's beaked whales are increasingly susceptible to marine debris ingestion, particularly plastic pollution. Their suction-feeding technique makes them prone to accidentally consuming marine litter (Simmonds, 2012), which can obstruct their digestive tracts. Stranded individuals in Croatia, Italy, and the Atlantic coast have significant quantities of plastic in their stomachs (Holcer et al., 2007; Podestà & Meotti, 1991; Poncelet et al., 2000). addition to that, chemical contaminants pose potential risks, with studies detecting elevated levels of mercury, selenium, and cadmium in the Mediterranean populations (Capelli et al., 2008). Climate change can also exacerbate these threats by altering marine ecosystems and potentially expanding the species' range into areas with increased anthropogenic pressures (Van der Kooij et al., 2016).

C) TOOTHED WHALES

6. PYGMY SPERM WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea
Family : Kogiidae
Genus : Kogia

Species : K. breviceps

Blainville, 1838

Key Identification Features:

- Steely bluish-grey dorsal coloration gently fading to pale grey on the ventral surface.
- Distinctive white to pale grey patch between eye and flipper, like a fish's gill cover.
- Conical head with a small, characteristically underslung lower jaw.
- Single blowhole slightly offset to the left.
- Short, broad flippers positioned unusually far forward on the body.
- Tiny, hook-shaped dorsal fin located towards the posterior of the mid-back region.
- Large flukes with slightly rounded tips and a pronounced median notch.

General Ecology:

Pygmy sperm whales (*Kogia breviceps* Blainville, 1838) are distinctive cetaceans belonging to the family Kogiidae, characterised by a porpoise-like body and a shark-like appearance with an underslung lower jaw.

© Sergio Martínez, some rights reserved (CC BY-NC 4.0)

Global distribution range of Pygmy Sperm Whale (*Kogia breviceps*). Source: IUCN Red List Assessment (2012).

Reaching a maximum size of 4 m approximately and weighing around 500 kg, these marine mammals are highly specialised deep-sea predators (McAlpine, 2018). They predominantly feed on mid and deepwater cephalopods, supplemented by fish and mesopelagic crustaceans, hunting at depths up to 1,200 meters using echolocation sophisticated techniques (West et al., 2009; McAlpine, 2014). Their feeding strategy involves water column and bottom-dwelling prey capture, with their unique hyoid anatomy suggesting powerful suction-feeding capabilities. They

relatively solitary, typically forming small groups of 1-3 individuals, potentially influenced food density, by prey availability, and predator avoidance (Dunphy-Daly et al., 2008; McAlpine, 2018). Known for their timid nature, they spend considerable time motionless at the water's surface and exhibit minimal aerial behaviour (Scott et al., 2001; Baird, 2016). Unlike larger sperm whales, spermaceti organ is primarily used for sound production and echolocation rather than buoyancy control (McAlpine, 2018).

Distribution:

Pygmy sperm whales inhabit deep oceanic waters across temperate and tropical regions of the Atlantic, Indian, and Pacific Oceans, ranging approximately from 50°S to 50-60°N (Jefferson et al., 2011; 2018). Their distribution McAlpine, includes New Zealand, Tasmania, South Africa, Canada, the United Kingdom, and Japan, with a preference for shelf breaks and insular slope waters. While rarely recorded in shallow seas or specific regions, the species' range remains poorly understood due to their inconspicuous behaviour (Notarbartolo di Sciara et al., 2017; Plön, 2004). Stranding records suggest localised abundance in areas such as South Africa and the southeastern United States (Hodge et al., 2018). In the North Atlantic, their distribution extends from tropical waters to the UK and Ireland, with documented strandings in Scotland, Ireland, the Netherlands, France, Spain, Portugal, and various Atlantic archipelagos (Berrow & Rogan, 1997; Evans, 2019). Indian waters have historical records of pygmy sperm whales (Sathasivam, 2000), with occasional stranding (Nair, 2020).

Global Threats:

- 1. Fisheries Interactions Pygmy sperm whales face significant anthropogenic risks from maritime activities. Bycatch in pelagic driftnet and longline fisheries has been observed, with generally low but potentially underreported levels (McAlpine, 2018). In the Canary Islands, a study of 28 stranded pygmy sperm whales revealed that four deaths were attributed to fisheries interactions, while ten were caused by ship strikes (de Canarias, 2018). The species' habit of lying quietly at the surface may contribute to their vulnerability to collisions. making vessel particularly susceptible to accidental encounters with maritime traffic. Historically, small numbers of pygmy sperm whales have been taken in coastal whaling operations in regions including Japan and Indonesia (Jefferson et al., 1993). Incidental drift gillnet fisheries capture have also been documented in various locations. Notably, unusual stranding events in Taiwan in 2005 highlighted the species' vulnerability, though the precise causes remained undetermined (Wang & Yang, 2006; Yang et al., 2008).
- 2. Underwater Noise Underwater noise pollution poses a significant threat to pygmy sperm whales, with various human activities generating potentially harmful acoustic disturbances. These sound-sensitive cetaceans rely heavily on acoustic communication and echolocation, making them particularly vulnerable to acoustic interference impacting navigation, foraging, and social interactions (Nowacek *et al.*, 2007; Williams *et al.*, 2020). Military sonar, seismic surveys, pile driving, and

other industrial, maritime operations can produce intense underwater sound sources that may disrupt these marine mammals' critical ecological behaviours (Clark *et al.*, 2009). Military sonar has been specifically identified as a potential cause of stranding events for pygmy sperm whales (Parsons *et al.*, 2008), but not all studies have found conclusive evidence of physiological damage.

3. Chemical Contaminants and Marine **Debris** - Chemical contamination and marine debris pose significant challenges for pygmy sperm whales. Limited research suggests that oxidative stress related to mercury and selenium balance may promote cardiomyopathy, potentially leading to strandings (Bryan et al., 2012). Marine debris ingestion is a growing concern, with studies documenting plastic fragments in their digestive tracts (Fernandez et al., 2009; Nelms et al., 2019). In one notable case, a juvenile female's dramatically improved after plastic removal, indicating a potential direct link between debris ingestion and physiological stress (Stamper et al., 2006).

7. DWARF SPERM WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla
Infraorder : Cetacea
Family : Kogiidae

Genus : Kogida Species : K. sima

Owen, 1866

Key Identification Features:

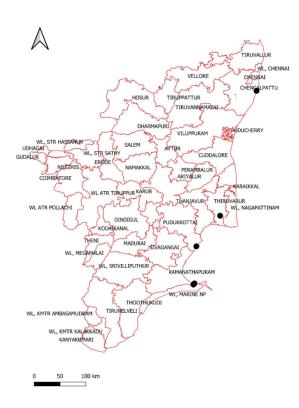
- Skin colour varies from bluish grey, dark grey, and blackish brown.
- Dark dorsal side merges into lighter flanks and ventral side.
- Dark, gill-shaped coloration present behind each eye.
- Head is square, with a conical, pointed snout and a small, under-slung jaw.
- Stocky body that is somewhat flat with a single blowhole located slightly to the left.
- Prominent and hooked dorsal fin located near the middle of their back.
- Flukes are well developed, slightly rounded at the tips, with a definite median notch.

General Ecology:

Dwarf sperm whales (*Kogia sima* Owen, 1866), formerly considered synonymous with the pygmy sperm whale until 1998, are one of two extant species in the family of Kogiidae. These small cetacean measures 2 to 2.7 m in length and weighs between 136 to 272 kg, distinguished from its cousin primarily by dorsal fin

positioning (Rudolph & Smeenk, 2009, 2008; McAlpine, 2018).

© Sergio Martínez, some rights reserved (<u>CC</u> <u>BY-NC 4.0</u>)



Global distribution range of Dwarf Sperm Whale (*Kogia sima*). Source: IUCN Red List Assessment (2012).

The species typically forms small pods of 1 to 4 individuals, occasionally up to ten, with group size possibly limited by food resource availability (Plön, 2004). A slow-moving species, it often floats at the surface with only its nape and dorsal fin exposed and can release a cloud of red-brown fluid when startled (Willis & Baird, 1998). As a suction feeder, it primarily preys on squid, using echolocation through narrowband high-frequency clicks rather than whistles to locate prey (Merkens et al., 2018). Natural predators include Whales and large sharks such as the (Staudinger *et al.*, 2014; Plön, 2004). Most knowledge about dwarf sperm whales from stranded specimens. Their inconspicuous behaviour, rather than actual rarity, makes live sightings uncommon (Jefferson *et al.*, 2011).

Distribution:

Dwarf sperm whales etropical temperate oceans worldwide, approximately from 45°S to 45°N (Jefferson *et al.*, 2011; McAlpine, 2018). Their distribution spans the Atlantic, Indian, and Pacific Oceans, with documented presence from Japan to Tasmania and New Zealand in the West Pacific and from British Columbia to central Chile in the East Pacific.

Dwarf Sperm Whale (*Kogia sima*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

In the Atlantic, they range from Virginia to southern Brazil in the west and from the Faroe Islands to South Africa in the east (Bloch & Mikkelsen, 2009; Willis & Baird, 1998). The species shows a preference for continental shelf breaks and insular slope waters, with notable frequencies around oceanic islands such as Hawaii, the and Indian Ocean islands, Bahamas. including Mayotte and the Seychelles (Dunphy-Daly et al., 2008; Kiszka et al., 2010; Baird et al., 2013; Braulik et al., 2018). Historical records of dwarf sperm whales along Indian waters are rare (de Silva, 1987 however, there have been of stranding in recent times, most notably along the coasts of Goa (de Souza, 2019), Maharashtra (Bhalerao, 2022), Lakshadweep (Aneesh Kumar et al., 2019), Tamil Nadu (Chandrasekar & Kumar, 2024), and West Bengal (Mukherjee, 2023).

Global Threats:

- 1. Fisheries and Hunting Dwarf sperm whales face threats from both accidental and deliberate capture in various fishing operations. Bycatch occurs in pelagic driftnet and longline fisheries, particularly in the northern Indian Ocean and northeastern Atlantic (Jefferson et al., 1993; Arbelo et al., 2013). Their habit of lying quietly at the surface may increase their vulnerability to ship strikes (McAlpine, Small-scale opportunistic hunting has been documented off the coasts of Japan, Indonesia, Taiwan, the Lesser Antilles, and Sri Lanka, although the impact is considered minimal (Jefferson et al., 1993).
- 2. Acoustic Disturbance Underwater noise pollution significantly threatens dwarf sperm whales. Sources include seismic surveys, pile driving, dredging, drilling, underwater explosions, and military sonars (Nowacek *et al.*, 2007;

Weilgart, 2007; Clark *et al.*, 2009; Williams *et al.*, 2020). Military sonar has been specifically linked to stranding events (Parsons *et al.*, 2008). A notable incident occurred in Taiwan in 2005, where 13 dwarf sperm whales were stranded over three weeks, though the cause remains uncertain (Yang *et al.*, 2008).

3. Environmental Factors - Threats include exposure to harmful algal blooms, with domoic acid implicated in dwarf sperm whale mortality in the southeastern United States (Fire *et al.*, 2009). Climate change may also impact cetaceans by altering prey abundance and distribution patterns (MacLeod *et al.*, 2005; Gambaiani *et al.*, 2009; Salvadeo *et al.*, 2010; Cañadas & Vázquez, 2017). However, these effects vary among species and populations (MacLeod, 2009; Sousa *et al.*, 2019), and specific impacts on dwarf sperm whales remain unknown.

8. SPERM WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea

Family : Physeteridae Genus : *Physeter*

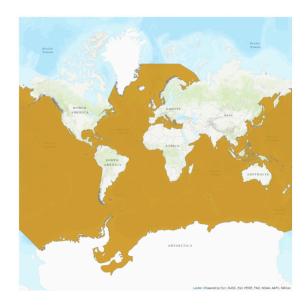
Species : P. macrocephalus

Linnaeus, 1758

Common Tamil Name: எண்ணெய் திமிங்கலம்

Key Identification Features:

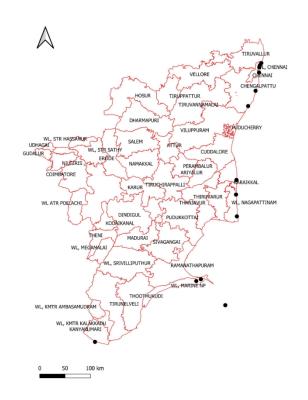
- The body is dark grey or brownish in colour, wrinkled skin covering its entire body.
- It features an enormous, square-shaped head that accounts for 1/3rd of its body length.
- A single blowhole is located at the front of the head, slightly offset to the left.
- The lower jaw is narrow and underslung.
- The whale's flippers are small, and paddle shaped.
- Its dorsal fin is a low hump, followed by a series of visible 'knuckles' or fleshy knobs.
- The tail fluke is triangular-shaped and dark, with a ragged trailing edge.


General Ecology:

Sperm whales (*Physeter macrocephalus* Linnaeus, 1758) are the largest toothed whales and predators. They are the sole living member of the genus *Physeter* and belong to the sperm whale family, which

includes the pygmy and dwarf sperm whales

© Gabriel Barathieu, some rights reserved (CC BY-SA 2.0)



Global distribution range of Sperm Whale (*Physeter macrocephalus*). Source: IUCN Red List Assessment (2019).

of the genus Kogia. Mature males average 16 metres in length, with their heads comprising up-to third of their body length. These pelagic mammals have a global range and migrate seasonally for feeding and breeding. Females and young males form social groups, while mature males typically lead solitary lives outside the mating season (Whitehead, 2018). They are the third deepest diving mammals, reaching depths of 300 to 800 metres and occasionally even 1 to 2 kilometres, in search of food. Their diet primarily consists of medium-sized squid but also includes giant and colossal squid, octopus, and fish like demersal rays and sharks (Whitehead, 2003, 2018). ealthy adults have no natural predators, calves and weakened individuals may fall prey to killer whale pods (Pitman et al., 2001). Sperm whales are known for their powerful echolocation, producing sounds up to 236 decibels underwater, the loudest of any animal (Møhl et al., 2003). The whale's head contains spermaceti, a waxy substance once highly sought after by the whaling industry for oil lamps, lubricants, and candles. Additionally, ambergris, a waxy digestive byproduct, remains valuable as a perfume fixative (Spitznagel, 2012).

Distribution:

Sperm whales are widely distributed, from the equator to high latitudes, primarily in deep offshore waters beyond 200 metres (Whitehead, 2003; Rice, 1989). dense near continental shelves and submarine canyons. Adult males are often found in higher latitudes, while both sexes inhabit temperate and tropical waters. In the North Atlantic, they are common in offshore European waters, the Norwegian Sea, and Macaronesian archipelagos the (Gunnlaugsson et al., 2009; Steiner et al., 2012). They also inhabit enclosed seas like the Mediterranean, Okhotsk, Gulf of California, and Gulf of Mexico. Notable movements include inter-archipelago and transoceanic journeys, with some individuals travelling up to 4,400 km (Steiner et al., 2012). are scarce and their is relatively sparse compared to other regions (Joseph et al., 2021; Mikhalev, 2020). ightings the Arabian Sea and the Bay of Bengal along the continental margins of India, Pakistan, and Sri Lanka have been recorded (Sathasivam, 2004; Gore et al., 2007; Laksith & Nanayakkara, 2023).

Sperm Whale (*Physeter macrocephalus*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

Global Threats:

1. Whaling Commercial whaling devastated sperm whale populations globally, reducing numbers from an estimated 1,100,000 to approximately 33% of pre-whaling levels (Whitehead & Shin, 2022). Between 1800 and 1980, roughly 1,000,000 sperm whales were killed, with particularly intense hunting periods in the 1840s and 1960s. The hunting focused intensively on specific sexes, potentially causing long-term social disruption. Removals of large males may have significantly impacted pregnancy rates while losing older females could have compromised social cohesion and ecological knowledge transmission (Best, 1979; Whitehead et al., 1997). growth rates are merely 1% annually recovery

- remains slow(Perrin *et al.*, 2009). Following the IWC's moratorium on commercial whaling in 1986, there has been very little whaling for sperm whales (an average of 12 whales per year) (Whitehead & Shin, 2022).
- 2. Fisheries and Marine **Debris** While Interactions their wide distribution buffers them from direct fisheries competition, interactions remain a considerable conservation concern. The Mediterranean Sea has especially problematic, persistent illegal driftnet fishing official continuing despite bans (Notarbartolo di Sciara, 2014). Marine debris, predominantly plastic, presents another critical challenge. Stranded sperm whales frequently exhibit digestive tract contamination, with plastic ingestion potentially causing fatal blockages, inflammatory changes. and pathogen transmission (Mazzariol et al., 2018; IWC, 2020).
- 3. Anthropogenic Pressures
 - Underwater noise from seismic surveys, naval operations, and industrial activities increasingly threatens sperm whale habitats. These acoustic disturbances can elicit behavioural and physiological changes. potentially affecting individual energy budgets and population dynamics (Nowacek et al., 2007; Pirotta et al., 2018). Chemical contamination further compounds these challenges, with sperm whale tissues showing high levels of xenobiotic compounds and trace metals. populations Mediterranean exhibit particularly elevated arsenic and aluminium concentrations (Savery et al., 2014; Squadrone et al., 2015). Ship strikes, especially in high-traffic areas like the Mediterranean and Canary

- Islands, represent an additional anthropogenic threat, with an estimated two fatal collisions annually (Fais *et al.*, 2016).
- 4. Ecosystem Vulnerability Sperm whales play a crucial role in marine ecosystem dynamics, particularly in carbon sequestration. Their iron-rich faeces stimulate phytoplankton growth in the Southern Ocean, potentially removing approximately 2 million tonnes of atmospheric carbon annually (Whitehead & Shin, 2022). With their slow population growth rate and specialized deep-sea feeding strategies, sperm whales may be vulnerable to environmental changes affecting deep-water squid populations. Some populations show modest recovery in relatively undisturbed areas while others continue to decline under intense anthropogenic pressures (Perrin et al., 2009).

D) OCEANIC DOLPHINS

9. COMMON DOLPHIN

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea
Family : Delphinidae
Genus : Delphinus
Species : D. delphis

Linnaeus, 1758

Common Tamil Name: ஓங்கில்

Key Identification Features:

- Dark grey dorsal cape that extends over the head
- Distinct crease between forehead and long slender beak with a dark patch around eye.
- Unique criss-cross/hourglass pattern on flank with yellow/beige patch at the front and light grey at the back separated by a dark dip in the dark grey dorsal cape.
- Tall, slightly curved dorsal fin with a pointed tip.
- Dark grey or black coloured curved flippers.
- Pale grey patch extending to tail stock.
- Flukes have pointed tips with a distinct median notch.

General Ecology:

Common dolphins (*Delphinus delphis* Linnaeus, 1758) are one of the most abundant cetaceans in the world.

© Gregory Smith, some rights reserved (<u>CC BY-SA</u> 2.0)

Global distribution range of Common Dolphin (*Delphinus delphis*). Source: IUCN Red List Assessment (2021).

Based on morphological differences they were earlier classified as two distinct species - short-beaked (D. delphis) and long-beaked (D. capensis) - but now common dolphins are now recognized as a more complex taxonomic group. Genetic research suggests long-beaked populations often derive from short-beaked ancestors, rendering them ecotypes rather than separate species (Heyning & Perrin, 1994; Best, 2007; Perrin, 2018). Currently, four subspecies are acknowledged: D. d. delphis (nominate subspecies), D. d. bairdii (Eastern North **Pacific** long-beaked

common dolphin), D. d. ponticus (Black Sea common dolphin), and D. d. tropicalis (Indo-Pacific common dolphin) (Society for Marine Mammalogy, 2021). Adult length ranges from 1.5-2.25 m and weight about 235 kg (Perrin, 2018). Common dolphins are highly social animals that live in groups ranging from a few tens to several thousands of individuals, feeding on and mesopelagic fish epipelagic and squids (Perrin, 2018). Their diet demonstrates both opportunism and specialization (Santos et al., 2013), with a preference for energy-rich prey (Meynier et al., 2008; Spitz et al., 2011). Common dolphins are believed to use signature whistles, similar to bottlenose dolphins, as acoustic identifiers or "names" within their social groups (Fearey et al., 2019).

Distribution:

Common dolphins exhibit a wide global distribution across tropical to temperate waters of the Atlantic, Pacific, and Indian Oceans (Perrin, 2018). They inhabit diverse marine environments, from nearshore to open-sea waters thousands of kilometres offshore. They are absent from the Gulf of Mexico and the Caribbean Sea in the Atlantic, except near Venezuela (Jefferson et al., 2011). Their range extends to southeastern South Africa, Namibia, southern Australia. New Zealand. Argentina, and northern Chile (Finday et al., 1992; Durante et al., 2016). In the Northern Hemisphere, they are found in the UK, Norway, Korea, Japan, and Canada (Caputo et al., 2017; Song, 2014; Jefferson et al., 2011). They also regularly occur in the Persian Gulf (Braulik et al., 2010; Preen, 2004) and the Red Sea (Notarbartolo di Sciara et al., 2017), with distinct subpopulations in the Mediterranean and Black Seas. Records of this species in

Indian waters are primarily from historical fisheries bycatch reports and strandings (Sathasivam, 2000). undreds of common dolphins caught incidentally the 1980s-1990s (MMRCNI: *Delphinus delphis/capensis*), with illegal hunting occurring as recently as 2023 for shark bait ('10 fishermen...', 2023).

Common Dolphin (*Delphinus delphis*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

Global Threats:

1. Incidental Bycatch - Common dolphins face significant threats from incidental capture in fishing gear worldwide. In the Eastern Tropical Pacific, annual mortality in tuna purse-seine fisheries was estimated at 24,000 in 1986, though this declined to 127 by 2016 following regulatory interventions (Scott *et al.*, 2018). In the western Atlantic, the average annual

- fishery-related mortality was approximately 419 individuals betweenand(Hayes et al., 2020). The Mediterranean and European North Atlantic regions are problematic, estimates suggesting between 5,000 and 10,000 common dolphins bycaught annually (Peltier et al., 2021). Various fishing methods contribute to this mortality, including pelagic trawls, bottom trawls, purse seines, gill nets, and long-line fisheries (Marçalo et al., 2018; Murphy et al., 2021).
- 2. Direct Hunting Historically, common dolphins have been extensively hunted. In the Black Sea, before the mid-1950s, they comprised 95% of cetaceans killed, with an estimated 1.5 million landed between 1931 and 1961 in the USSR and Bulgaria (Zemsky, 1996). Japandolphin hunt in the early 1970s killed over 8,000 individuals annually, peaking at 9,032 in 1973 (Kasuya, 2017). Directed takes for human consumption and shark bait continue in some areas like Peru (Mintzer et al., 2018). In the Mediterranean, culling campaigns d a significant mortality until the 1970s, likely contributing to population and fragmentation through government-supported bounty systems across several countries (Bearzi et al., 2004, 2021).
- 3. Chemical Pollution and Reproductive Chemical pollutants, **Impacts** particularly polychlorinated biphenyls (PCBs), threaten common dolphins substantially. In the Northeast Atlantic, many necropsied dolphins exhibited PCB concentrations exceeding toxicological thresholds (Murphy et al., 2018). These high pollutant levels correlate with reproductive challenges, including reduced pregnancy rates and longer calving intervals. Studies have demonstrated that **PCB** and Polybrominated Diphenyl Ether (PBDE) concentrations in blubber negatively impact reproductive success, with potential long-term population implications (Pierce et al., 2008; Murphy et al., 2018).
- 4. Marine **Debris** and Acoustic **Disturbance -** Common dolphins face emerging threats from marine debris and noise pollution. Microplastics have been found in nearly all examined dolphins, with studies reporting up to 12 stomach items per (Hernandez-Gonzalez et al., 2018; et al., 2019). Acoustic disturbances from military sonar, naval exercises, and other activities can cause significant stress and potential mass strandings, as evidenced by a 2008 incident in the UK involving 26 common dolphins (Jepson et al., 2013).

10. PYGMY KILLER WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla
Infraorder : Cetacea

Family : Delphinidae

Genus : Feresa

Species : F. attenuata

Gray, 1874

Key Identification Features:

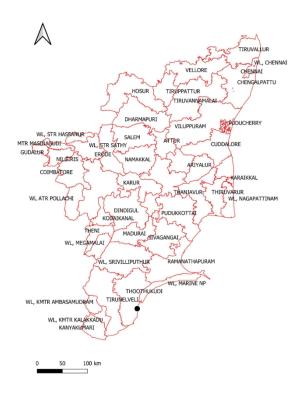
- Body exhibits a dark grey to black coloration, contrasting with the lighter grey sides.
- Sharp transition from the dark body to the lighter grey on the sides.
- Flesh around the lips and the tip of the snout is distinctly white.
- The dorsal fin is large and prominent.
- The flippers have slightly rounded tips.
- Underside is white or light grey, creating a contrast with the darker upper body.

General Ecology:

Pygmy killer whales (*Feresa attenuata* Gray, 1874) are a rarely seen oceanic dolphin species, with their resemblance to killer whales giving them their common name. They inhabit deep, warm waters, typically beyond the continental shelf, and are mainly found in tropical regions. They also occasionally stray into warm temperate areas. measures 2-2.5 m, withbetween the

sexes having not been observed (Donahue & Perryman, 2009; Baird *et al.*, 2011). These dolphins are often confused with melon-headed and false killer whales due to their small size and similar appearance (Baird, 2010).

P Adam U (NOAA Photo Library)


Global distribution range of Pygmy Killer Whale (*Feresa attenuata*). Source: IUCN Red List Assessment (2008).

Unlike melon-headed whales, pygmy killer whales do not usually lift their full face above the water when surfacing, making identification challenging (Allport *et al.*, 2017). They travel and rarely bow ride (Baird, 2010). Pygmy killer whales use echolocation, ranging from 32-100 kHz, to

navigate and hunt (Madsen *et al.*, 2004). They feed on cephalopods and fish have been observed in groups of 4 to 30 or more individuals (Elorriaga-Verplancken *et al.*, 2016; McSweeney *et al.*, 2009). Occasionally, they have been recorded attacking dolphins associated with tuna in the Eastern Tropical Pacific (Perryman & Foster, 1980).

Distribution:

Pygmy killer whales are widely distributed worldwide in tropical and subtropical oceanic waters, typically between 40°N and 35°S. They are regularly sighted in Hawaii and Japan, with a resident population around Hawaii exhibiting a tightly connected social structure (McSweeney et al., 2009). In the Indian Ocean, they are present year-round near Sri Lanka and the Lesser Antilles. They have been found in the southwest Indian Ocean near Europa Island, Mozambique, and South Africa, though not off East Africa (Allport et al., 2017; Findlay, 1992).

Pygmy Killer Whale (*Feresa attenuata*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

They have been observed in the South American coast along the Atlantic from South Carolina to Senegal, including the Gulf of Mexico (Castro, 2004). The species is generally absent from the Mediterranean, Red Sea, and Persian Gulf (Notarbartolo di Sciara et al., 2017; Jefferson et al., 2011; Fisher et al., 1999). With no historical presence, Sathasivam (2000) that inhabit the Indian coast. This assumption was 2009 confirmed in with the first documented sighting in Kochi, Kerala (Jeyabaskaran et al., 2011), followed by the successful rescue of a live stranding in Ramanathapuram in 2024 (MMRCNI).

Global Threats:

1. Fisheries Interactions - Pygmy killer whales have been caught in small numbers in harpoon, drive, or driftnet fisheries across the Caribbean, Sri Lanka, Taiwan, Japan, and Indonesia (Ross & Leatherwood, 1994; Perrin et al., 2005; Baird, 2018). In Sri Lanka, they are sometimes harpooned as bait in longline fisheries targeting sharks and other oceanic fish. Although they comprise less than 2% of cetaceans bycaught in Sri Lankan gillnet fisheries, this could equate to 300-900 individuals annually (Ross & Leatherwood, 1994). In the U.S. Pacific, Gulf of Mexico, and U.S. Atlantic waters, fishery-related mortality and serious injury to pygmy whales considered killer are insignificant and approaching zero (Carretta et al., 2017; Waring et al., 2013). However, incidental catches occur in regions with poor monitoring, such as the Philippines, Taiwan, and Ghana (Ross & Leatherwood, 1994; Dolar, 1994; Perrin *et al.*, 2005; Debrah *et al.*, 2010). Despite the relatively low number of documented kills, the lack of comprehensive monitoring in many areas poses a significant threat in regions where pygmy killer whales' distribution overlaps with extensive gillnetting operations; even small takes could have a substantial long-term impact on local populations (Ross & Leatherwood, 1994).

2. Anthropogenic Noise - Pygmy killer whales are particularly to loud anthropogenic sounds, such as military sonar and seismic surveys, similar to beaked and melon-headed whales (Cox et al., 2005; Southall et al., 2013, 2016). Mass strandings have been notably frequent in Taiwan, where 25% of such events since 1995 have occurred along a small section of the southwest coastline. Between 1995 and three additional near-mass stranding events were documented in the region. The most plausible cause for these strandings is anthropogenic sound (Brownell et al., 2009; Wang & Yang, 2006).

11. SHORT-FINNED PILOT WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea
Family : Delphinidae
Genus : Globicephala

Species : G. macrorhynchus

Gray, 1846

Common Tamil Name: குறுந்துடுப்பு வலவம் திமிங்கிலம்

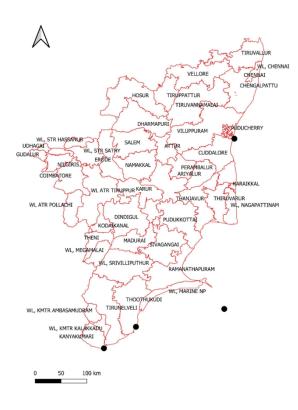
Key Identification Features:

- Black to dark grey/brown body colour.
- Bulbous head that is more pronounced in males.
- Narrow underslung lower jaw with an upwards curved mouth.
- Broad based dorsal fin that is strongly curved and has a rounded tip.
- Pale grey saddle patch that extends in a tripe towards the eye.
- Flippers are short (about 1/6th of the body length) and sickle-shaped.
- W-shaped grey or whitish patch on chest between flippers.
- Thick tail stock with flukes having pointed tips and a distinct median notch.

General Ecology:

Short-finned pilot whales (*Globicephala macrorhynchus* Gray, 1846) represent one of two species in the genus *Globicephala*, alongside the Long-Finned Pilot Whale (*G. melas*). It has a worldwide distribution with distinct populations in the Pacific, Atlantic and Indian Oceans.

© dnoby, some rights reserved (<u>CC BY-NC 4.0</u>)



Global distribution range of Short-finned Pilot Whale (*Globicephala macrorhynchus*). Source: IUCN Red List Assessment (2012).

Adult pilot whales reach an average length of about 6 m, with males being larger than females (Olson, 2009). Short-finned pilot whales are long-lived, slow to reproduce, and highly social animals. They are usually found in pods of 10 to 30 individuals, though groups of up to several hundred have been reported (Téllez et al., 2014). are deep-diving predators (Alves et al., 2018) predominantly foraging along continental shelf breaks (Thorne et al., 2017), with a diet primarily composed of squid, supplemented by fish and octopus and rarely other marine mammals (Mintzer et al., 2008; Norris et al., 1994). Their sophisticated hunting strategy involves echolocation, using complex clicking techniques to locate and pursue prey. They generate rapid click "buzzes" during high-speed diving attacks, enabling precise underwater hunting (Pain, 2022).

Distribution:

Short-finned pilot whales inhabit warm temperate to tropical waters, predominantly in deep offshore areas, typically between 50°N and 40°S (Olson, 2009). Their distribution in the Atlantic Ocean extends from Brazil to New Jersey in the west and South Africa to France in the east (Heimlich-Boran, 1993; Ridgeway & Harrison, 1981).

Short-finned Pilot Whale (*Globicephala macrorhynchus*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

They exhibit partial distributional overlap with long-finned pilot whales, particularly in the North Atlantic and Macaronesia regions (Hayes et al., 2017; Olson, 2009). The species is rare in regions like the East China Sea and Japan, with only one confirmed Mediterranean record (Kasuya, 2017; Notarbartolo di Sciara, 2016). Records suggest they are abundant in the deep water of the northern Indian Ocean (Minton et al., 2018), with three notable mass strandings along the Indian coastline. In 1852, a significant stranding was recorded near Salt Lake, Kolkata (Jerdan, 1984), followed by two separate events near Manapad, Thoothukudi - first in 1973 (Alagarswami et al., 1973) subsequently in 2016 (Joseph & Kumar, 2016).

Global Threats:

1. Direct Hunting - short-finned pilot whales have been extensively hunted across regions. In the western North Pacific, particularly in Japan, annual catches have ranged from 100 to 500 whales between 1972 and 2009, using diverse methods, including drive hunts, harpooning, and small-type whaling (Kasuya, 2017, 2018). In the Caribbean, islands like St. Vincent and the Grenadines have an average of 141 pilot whales have been annually from 1962 to 2009 (Fielding, 2013). Similar hunting practices have been documented in other regions, including Indonesia and the Philippines, where directed hunting of marine mammals was reported until legal restrictions were implemented in 1992 (Mustika, 2006; Dolar et al., 1994). Some regions have seen a decline in hunting due to legal interventions, changing cultural practices, reduced and whale availability.

- 2. Entanglements and **Bycatches** Short-finned pilot whales face significant threats from fisheries interactions globally. They are likely killed in moderate numbers through longline and drift gillnet fisheries across their range. In the United States, the estimated annual fishery-related serious injury and mortality on the east coast was 233 individuals (Hayes et al., 2017). Around Fiji, they are known as major longline depredators, and interactions have been documented in the western tropical Indian Ocean (Donoghue et al., 2003; Romanov, 2002). The most common human-related cause of death in some regions includes entanglement and accidental captures, with additional threats from gunshots and spear wounds (Mignucci-Giannoni et al., 1999).
- 3. Anthropogenic Noise Short-finned whales are vulnerable pilot anthropogenic sounds from naval sonar, seismic surveys, and vessel traffic. Some mass-stranding events have been spatially and temporally associated with high levels of anthropogenic noise (Hohn et al., 2006; Parsons, 2017). Studies in the Canary Islands have shown that vessel noise significantly reduce communication ranges and induce stress, potentially impacting population fitness (Jensen et al., 2009). Underwater noise from small vessels can mask communication and potentially affect animal behaviour and survival.
- 4. Chemical Contamination Moderate ofcontaminants. levels including mercury, polychlorinated biphenyls, and chlorinated pesticides, have been found in short-finned pilot whale blubber (Gaskin et al., 1974; Simmonds et al., 2002). In some regions like Japan and St. Vincent, contaminant levels in blubber and meat exceed recommended human consumption levels (Simmonds et al., 2002; Fielding & Evans, 2014). race element studies revealed high mercury and cadmium concentrations, with 54% of samples showing mercury levels above toxic thresholds for liver damage in marine mammals (Monteiro et al., 2017).

12. RISSO'S DOLPHIN

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea
Family : Delphinidae
Genus : Grampus
Species : G. griseus

G. Cuvier, 1812

Common Tamil Name: கண்டா ஓங்கில்

Key Identification Features:

- Body coloration starts as grey or olive-brown and whitens with age due to scars and scratches.
- Very stocky body with a blunt head and no discernible beak.
- Light grey patches visible on ventral region.
- Flippers are long, pointed, and recurved.
- Tall, curved, sickle-shaped dorsal fin located mid-way down their back.
- Robust anterior body tapers into a narrow tailstock.
- Flukes are long and pointed with a definite median notch

General Ecology:

Risso's dolphins (*Grampus griseus* G. Cuvier, 1812), the only species the g*Grampus*, are widely distributed in temperate and tropical waters globally, often found in oceanic and continental slope, typically at depths of 200 to 1,000 meters. They weigh around 300-500 kg and

measure around 3–4 m adults (Jefferson *et al.*, 2014; Hartman, 2018).

© Robin Gwen Agarwal, some rights reserved (CC BY-NC 4.0)

Global distribution range of Risso's Dolphin (*Grampus griseus*). Source: IUCN Red List Assessment (2012).

They prefer habitats with steep continental slopes and topography, such as seamounts and escarpments, typically at depths of 400 to 1,000 metres and in waters ranging from 15–20°C, which support their primary diet of cephalopods including squid, cuttlefish, and octopus (Perrin *et al.*, 2009; Cockroft *et al.*, 1993; Öztürk *et al.*, 2007). These dolphins are known to feed predominantly at night, taking advantage of the vertical migration of their prey (Soldevilla *et al.*, 2010; Hartman, 2018). Risso's dolphins are social animals, typically forming pods of 10-50 individuals, and are occasionally

observed in mixed-species groups of common and striped dolphins (NOAA Fisheries: Risso's Dolphin; Frantzis & Herzing, 2002). Their distribution is influenced by oceanic conditions and prey availability, with local abundance often linked to areas of high marine productivity (Kruse *et al.*, 1999; Davis *et al.*, 1998).

Distribution:

Risso's dolphins have a broad global distribution, inhabiting tropical and temperate waters in the Indian, Pacific, and Atlantic Oceans, including areas like the Gulf of Mexico, the Mediterranean Sea, and the Sea of Japan (Jefferson *et al.*, 2014; Perrin *et al.*, 2009).

Risso's Dolphin (*Grampus griseus*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

Their range extends from continental shelves to oceanic regions beyond 2,000 meters depth, from Newfoundland and

Norway to the southern tips of South Africa, Australia, and South America (40-50°S) (Jefferson et al., 2014). In the Pacific, they are found from French Polynesia to the Hawaiian Islands and the Gulf of Alaska, with notable populations along west coast of. They range from Liberia and Guinea to southern Greenland in the eastern Atlantic. Historical and recent records show their presence along Indian (Alling, the coasts Rajagopalan et al., 1984), including recent sightings and strandings near Chennai (Chaitanya, 2020; 'Dead Risso's dolphin...', 2023; Oppili, 2016).

Global Threats:

- 1. Fisheries and Hunting Risso's dolphins face significant threats from global fishing practices and hunting. Sri Lanka, approximately 15% of the 9,000 annual cetacean landings were Risso's dolphins, primarily caught in gillnets or harpooned (Leatherwood, 1994). In Japan, these dolphins are regularly taken by hand harpoon, driving techniques, and set nets, with reported catches ranging from 250-500 annually Similar (Kasuya, 2018). hunting practices occur in the Philippines, China, and Taiwan, where they are targeted by artisanal hunting and incidentally caught in fishing gear (Dolar, 1994, 2006). The Faroe Islands have also documented intentional killings of Risso's dolphins, though they are not the primary target of drive hunts (Bloch et al., 2012).
- 2. Incidental Bycatch Bycatch represents a significant global threat to Risso's dolphins across multiple oceanic regions. Incidents have been documented in pelagic longline fisheries in the southwestern Indian

- Ocean, the U.S. Atlantic coast, La Reunion, Tanzania, Ghana, the Azores, and the Solomon Peru, **Islands** (Garrison, 2007; Kiszka, 2015: Sabarros et al., 2013; Bearzi et al., 2011; Debrah et al., 2010; Reeves et al., 2013). While bycatch rates vary, they are particularly problematic in driftnets targeting tuna, billfish, and other large pelagic fish. In the Mediterranean, driftnets - despite being banned in some areas - appear to be associated with the highest Risso's dolphin mortalities (Bearzi et al., 2011; Evans, 2013).
- 3. Chemical **Pollution** and Contaminants Risso's dolphins accumulate substantial chemical contaminants. particularly in the Mediterranean region. Studies have revealed varying levels of compounds, organochlorine heavy metals, and trace elements in their tissues. High mercury concentrations have been found in dolphins stranded along the Adriatic, Ligurian, Corsican coasts (Storelli et al., 1999; Zucca et al., 2005; Capelli et al., 2008). Cadmium levels are notably elevated, likely due to their cephalopod-based diet, which naturally concentrates these metals (Storelli et al., 1999; Law et al., 2012). Additionally, halogenated flame retardants have been detected, though research remains limited (Barón et al., 2015).
- 4. Anthropogenic Noise Risso's dolphins are vulnerable to various anthropogenic disturbances, particularly noise underwater and vessel interactions. Like deep-diving beaked they are susceptible whales, disruptions from military sonar, seismic surveys, and other loud sound sources (Cox et al., 2005; Southall et al., 2016). Whale-watching activities substantially alter their behavioural patterns, potentially impacting social and resting interactions (Visser et al., 2011). Underwater noise from pile driving, dredging, drilling, and underwater explosions pose additional threats (Nowacek et al., 2007; Williams al., 2020). Gas embolism observations in stranded individuals further highlight the potential physiological impacts of acute noise exposure (Jepson et al., 2005).

13. KILLER WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea

Family : Delphinidae

Genus : Orcinus Species : O. orca

Linnaeus, 1758

Common Tamil Name: கொலையாளி திமிங்கலம்

dentification features:

- Body is predominantly jet black with a robust, streamlined form.
- Head is rounded, tapering to a pointed snout with distinctive white chin.
- Distinctive oval white patches (eye patches) positioned behind each eye.
- Large, paddle-shaped pectoral flippers.
- Sexual dimorphism in dorsal fins adult males possess tall, triangular fins reaching up to 1.8 meters, while females and juveniles have shorter, more curved fins.
- Characteristic pale grey saddle patch behind dorsal fin.
- Striking white ventral patch extends along flanks, creating sharp demarcation with black colouration.
- Tail flukes show countershading: black dorsally, white to pale ventrally.

® Robert Pittman, National Oceanic and Atmospheric Administration (NOAA)

Global distribution range of Killer Whale (*Orcinus orca*). Source: IUCN Red List Assessment (2013).

General Ecology:

Killer whales (Orcinus orca Linnaeus, 1758), or s, are the largest members of the oceanic dolphin family and the only extg These apex predators. instantly recognisable bv their distinctive black-and-white patterning, are found in diverse marine environments from the Arctic to Antarctic regions to tropical seas. They are large dolphins, attaining length of 9 m in males and 7 m in females with maximum weights of 4700-6600 kg in adults (Ford, 2009). Individual populations often specialise in particular prey types, with their diet encompassing marine mammals, seabirds, fish sea turtles, (including sharks and and rays).

cephalopods (Dahlheim & Heyning, 1999; Ford & Ellis. 1999). Their hunting strategies are remarkably diverse, from intentional beaching to capture pinnipeds to creating waves to wash seals off ice floes, often employing cooperative techniques to herd fish or attack large prey (Dahlheim & Heyning, 1999; Baird, 1998; Pitman & Durban, 2012). They are highly social animals, forming stable matrilineal family groups (pods) that transmit specific vocal behaviours and hunting techniques across generations (Heimlich & Boran, 2001). While their migration patterns remain understood. poorly long-distance movements have been documented in high-latitude populations (Matthews et al., 2011; Durban & Pitman, 2012).

Distribution:

Killer whales are the most cosmopolitan of all cetaceans, potentially the second-most widely distributed mammal species after humans (Rice, 1998). Whilst found in all oceans and most seas, they prefer higher latitudes and coastal areas with high marine productivity (Carwardine, 2001; Dahlheim & Heyning, 1999). The highest densities occur in the northeast Atlantic around Norway, the north Pacific along the Aleutian Islands, and the Southern Ocean off Antarctica. Although present in tropical waters, their densities are 1-2 orders of magnitude lower than in polar regions (Forney et al., 2006). They inhabit various marine environments, from surf zones to open seas, including semi-enclosed waters like the Mediterranean, Red Sea, and Persian Gulf (Reeves et al., 2017). Killer whales have been documented along Indian coastlines, with historical records from Gujarat, Goa, Tamil Nadu, the Andaman and Nicobar Islands, and Lakshadweep (de Silva, 1987; Sathasivam, 2004), complemented by recent sightings off Maharashtra (Chatterjee, 2019; 'Watch: Orcas spotted...', 2023), Karnataka ('Killer whales sighted...', 2024), and Goa (Monteiro, 2022).

Killer Whale (*Orcinus orca*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

Global Threats:

1. Whaling and Hunting - Killer whales faced significant commercial exploitation throughout the 20th century. Norwegian, Japanese, Soviet whalers primarily hunted killer whales, with a dramatic peak of 916 whales killed in the 1979/80 Antarctic season (Dahlheim & Heyning, 1999). Historically, hunting occurred in European waters for commercial purposes and to protect fisheries' interests (Sigurjónsson & Leatherwood, 1988). Only East Greenland maintains an active hunt, with a significant

- increase in takes between 2009 and 2017, recording at least 47 whales landed at Tasillaq (Lennert & Richard, subsistence 2017). For purposes, small-scale hunting continues in some regions, including Indonesia and Greenland (Reeves, 2002). Additionally, conflict with fisheries has led to intentional shootings, particularly in Alaska where depredation of longline fisheries is extensive (Jefferson et al., 1993; Donoghue et al., 2003).
- 2. Environmental Contamination and **Pollution -** Persistent organic pollutants like Polychlorinated Biphenyls (PCBs) Killer severely threaten Whale populations globally. These mammals have some of the highest pollutant loads recorded in any animal (Jepson et al., 2016; Desforges et al., 2018). British Columbia and Washington's southern resident and transient Killer Whales are among the most PCB-contaminated cetaceans worldwide (Ross et al., 2000). European populations show concerning contamination levels, with the highest recordings in the UK, Ireland, Canary Islands, and Gibraltar waters (Beck et al., 2014). These pollutants are linked to reproductive failure, compromised immune systems, endocrine disruption, carcinogenicity (Jepson et al., 2016; Dietz et al., 2019). Populations near industrial coastlines and those feeding at higher trophic levels show more significant contamination due biomagnification. Small or declining populations in the northeastern Atlantic. particularly near Gibraltar, show low population growth is consistent with PCB-induced reproductive toxicity (Mongillo et al., 2012).
- 3. Human Disturbance and Acoustic Impacts - Whale-watching tourism and maritime traffic increasing pose significant threats to killer whale populations. Moving boats disrupt foraging and resting patterns, while underwater noise interferes with social and echolocation signals (Erbe, 2002). Studies in British Columbia have close shown that approaches whale-watching vessels trigger avoidance responses, resulting energetic costs for frequently disturbed whales (Williams et al., 2002, 2006). The growing concern of ambient noise from shipping and vessel traffic can mask echolocation signals, potentially disrupting foraging behaviour and reducing prey acquisition (Williams et 2014; Veirs *et al.*, Fast-moving boats also present direct risks through vessel strikes (Visser, 1999).
- 4. Climate Change and Prev Availability - In the Arctic, declining sea ice has increased their access to marine mammal prey that traditionally relied on ice for protection (Ferguson et al., 2010; Higdon et al., 2012), though unpredictable freezing in newly accessible areas risks pod entrapment (Westdal et al., 2017; Jourdain et al., 2021). The impact on prey populations remains a significant concern (Jourdain et al., 2019). Many populations face challenges from reduced prev availability, with large-scale reductions in predatory fish populations (Myers & Worm, 2003) particularly affecting fish-eating populations. In British Columbia Washington and State. Pacific Salmon stock declines correlate with reduced survival and reproductive rates in resident killer whales (Ward et

al., 2009; Ford et al., 2010). Similarly, depleted bluefin tuna stocks in the Mediterranean Sea have significantly impacted killer whale survival near the Strait of Gibraltar (Reeves & Notarbartolo di Sciara, 2006; Esteban et al., 2016).

14. MELON-HEADED WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea

Family : Delphinidae Genus : *Peponocephala*

Species : P. electra

Gray, 1846

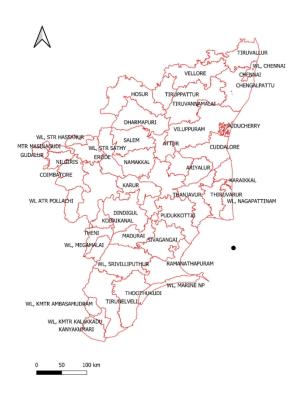
Key Identification Features:

- Body is mostly dark grey, with a faint, darker grey cape that narrows at the head.
- Small conical head with a rounded melon and no discernible beak.
- White markings on their lips and dark 'masks' around the eyes.
- White or light grey areas are common in the throat region.
- Dorsal fin is relatively large and sickle-shaped.
- Flippers are relatively long, sickle-shaped, and sharply pointed at the end.
- Tail flukes are pointed or slightly rounded at the tips, with a definite median notch.

General Ecology:

Melon-headed whales (*Peponocephala electra* Gray, 1846) are toothed whale within the oceanic dolphin family. They are named for their distinctive head shape (Perryman & Danil, 2018). Often mistaken for pygmy killer whales, they can be distinguished by their head shape, flippers, and dorsal cape (Carwardine, 2017).

© Cyril di Bisceglie, some rights reserved (<u>CC</u> <u>BY-SA 4.0</u>)



Global distribution range of Melon-headed Whale (*Peponocephala electra*). Source: IUCN Red List Assessment (2012).

Males are marginally larger than females (by 6 to 10 cm), with recorded specimens measuring around 2.5-2.8 m (Perryman & Danil, 2018). These highly social cetaceans travel in groups of 100 to 500, occasionally forming herds of up to 2,000 individuals (Mullin et al., 1994; Jefferson et al., 2011). They are fast swimmers that create spray while porpoising and may spyhop or leap clear of the water (Carwardine, 2017). While generally wary of boats, they occasionally bow-ride (Brownell et al., 2009). Their diet consists primarily of pelagic and mesopelagic squid and small fish, with some crustaceans (Jefferson & Barros, 1997; West et al., 2018). They rest in near-surface waters during morning after nocturnal foraging and become more active and social in afternoons, feeding at night when prey migrates to shallower depths (Brownell *et al.*, 2009; Baumann-Pickering *et al.*, 2015; West *et al.*, 2018). Their predators include large sharks and killer whales, with non-lethal cookie-cutter shark bites observed (Baird, 2016; Bradford *et al.*, 2017).

Distribution:

Melon-headed whales inhabit deep tropical and subtropical oceanic waters between 40°N and 35°S, often overlapping with the distribution of Pygmy Killer Whales (Bryden *et al.*, 1977; Perryman & Danil, 2018; Jefferson & Barros, 1997).

Melon-headed Whale (*Peponocephala electra*) along Tamil Nadu (black dots). Data source: Marine Mammals Research & Conservation Network of India (2025).

While primarily offshore pelagic, they are frequently associated with oceanic islands and archipelagos, such as Hawaii, Palmyra, and the Philippines (Brownell et al., 2009). They are commonly found the central Hawaiian Islands, western Indian Ocean islands. and in eastern Indonesia (Aschettino et al., 2012; Dulau-Drouot et al., 2008; Kiszka et al., 2010, 2011; Mustika, 2006). In the Atlantic, they occur in the Gulf of Mexico and the Lesser Antilles, though they are relatively uncommon (Mullin et al., 1994; Watkins et al., 1997; Yoshida et al.. 2010). Extralimital strandings have been recorded in western Europe, central Japan, and South Africa (Best & Shaughnessy, 1981; Spitz et al., 2011; Amano et al., 2014). In India, they have been reported from the southeast and southwest coasts, as well as from the Lakshadweep and Andaman and Nicobar archipelagos (MMRCNI).

Global Threats:

1. Fisheries Bycatch - Melon-headed whales are vulnerable to bycatch in various fisheries, which can lead to injury or death. They have been incidentally caught in longline fisheries targeting tuna and swordfish Mayotte, as well as in driftnet fisheries in the Philippines, Sri Lanka, Ghana, and India (Kiszka et al., 2008; Ilangakoon, 1997; Jeyabaskaran & Vivekanandan, 2013). Although rare, bycatch has also occurred in the Eastern **Tropical** Pacific purse-seine fisheries (Perryman et al., 1994). Injuries such as body scars and dorsal fin disfigurements have been observed in individuals near Mayotte and Hawaii, likely due to interactions with fisheries. Bycaught animals are sometimes used as bait, and data on bycatch rates remain sparse in many regions (Mintzer et al., 2018).

- **2. Direct Hunting -** Melon-headed whales for bait are hunted or human consumption in small-scale cetacean fisheries across several regions. including Sri Lanka, the Caribbean, the Philippines, and Indonesia (Caldwell & Caldwell. 1975: Dolar. Ilangakoon, 1997). In Ghana, they are the third most caught cetacean species for 'marine bushmeat' by artisanal fishermen (Mintzer et al., 2018). Historically, Japanese drive fisheries occasionally targeted these whales, with recent increases in catch quotas, such as the 704 individuals proposed for the 2017/18 season in Taiji (IWC, 2018).
- 3. Pollution Melon-headed whales face threats from environmental contaminants, including plastic debris, oil spills, and industrial waste, which lead to bioaccumulation in marine ecosystems. Persistent organic pollutants (POPs) like PCBs, DDTs, and PBDEs accumulate in their blubber, potentially affecting health, hormone levels, and immune and reproductive systems (Kajiwara et al., 2008; Bachman et al., 2014). High contaminant levels can be transferred from mothers to calves, increases calf mortality. PBDE and chlordane levels in blubber increased in Japan between 1980 and 2000 (Kajiwara et al., 2008).
- 4. Anthropogenic Noise Melon-headed whales are sensitive to anthropogenic noise, such as military sonar, and seismic surveys. These noises have been linked to mass stranding events, particularly in Japan and Madagascar (Southall *et al.*, 2006; Amano *et al.*, 2014). The species is notably sensitive to mid-frequency active sonar and island-associated populations, such as Hawaii) face displacement from critical habitats (Southall *et al.*, 2013).

15. FALSE KILLER WHALE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea
Family : Delphinidae
Genus : Pseudorca
Species : P. crassidens

Owen, 1846

Key Identification Features:

- The body is a dark grey to black colour, with the cape being a slightly darker shade and the underside a bit lighter.
- It has a long, slender head that tapers to a rounded snout, which extends over the mouth.
- A distinctive W-shaped light grey patch is present on the chest, situated between the flippers.
- The flippers are long and strongly curved, featuring a pronounced bend that is an 'S' shape.
- The dorsal fin is prominent, typically curved, and slightly rounded at the tip.
- The tail flukes are relatively smaller compared to the overall body size.

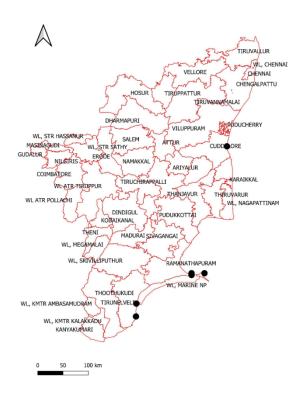
General Ecology:

False killer whales (*Pseudorca crassidens* Owen, 1846) are oceanic dolphins found primarily in tropical and subtropical waters worldwide, with the highest densities in tropical regions (Ferguson & Barlow, 2003; Baird, 2016). Adult males reach lengths of almost 6 m and females up to 5 m (Baird, 2009). As apex predators, they inhabit

deep, offshore waters and occasionally approach coastal areas near oceanic islands.

© Rafael de la Parra, some rights reserved (<u>CC</u> <u>BY-NC 4.0</u>)

Global distribution range of False Killer Whale (*Pseudorca crassidens*). Source: IUCN Red List Assessment (2012).


These highly social marine mammals travel in large, complex social groups ranging from 10-20 members to massive pods of over 500 individuals (Caldwell et al., 1970; Riccialdelli & Goodall, 2015). Their diet is diverse, targeting large fish species like mahi-mahi, tuna, swordfish, sailfish, and cephalopods (Alonso et al., 1999; Oleson et al., 2010). They occasionally prey on marine mammals, including smaller dolphins, particularly those disoriented from fishing operations (Baird, 2009). They use echolocation to navigate and locate prey, with males possessing larger melons

than females (Kloepper *et al.*, 2012). They are deep divers, capable of reaching depths over 900 meters and swimming at speeds around 29 km/h (Zaeschmar *et al.*, 2014; Minamikawa *et al.*, 2011). Predation risks include killer whales and large sharks (Odell & McClune, 1999), and they are known to form interspecies social bonds, occasionally interacting with other dolphin species like bottlenose dolphins (Baird, 2009).

Distribution:

False killer whales are widely distributed across tropical to warm temperate zones in all three major oceans: Atlantic, Pacific, and Indian (Zaeschmar et al., 2014; Odell & McClune, 1999). They predominantly deep, offshore waters, inhabit significantly higher densities in tropical regions between 40°N and 40°S latitudes. Generally, they do not range beyond 50° latitude in either hemisphere, though seasonal movements may be associated with warmer currents (Notarbartolo di Sciara et al., 2017). These marine found mammals are in numerous semi-enclosed seas and bays, including the Sea of Japan, the Yellow Sea, the Timor Sea, the Arafura Sea, the Red Sea, and the Persian Gulf. ccasionally they are observed in the Mediterranean Sea, with a few extralimital records in the Baltic Sea (Baldwin et al., 1998; Leatherwood et al., 1989; Aguayo, 1978). Similarly, limited strandings have been reported along the Atlantic coast of Morocco from the Strait of Gibraltar to Agadir (Masski & de Stéphanis, 2018). Strandings along the coasts of Tamil Nadu, primarily along Chennai, Cuddalore, Palk Bay and the Gulf of Mannar, have been recorded historically (Thiagarajan et al., 1984; Rao et al., 1989; Kasim et al., 1993; Nammalwar et al.,

2002) as well as recently (Ravi & Prabhu, 2017; MMRCNI).

False Killer Whale (*Pseudorca crassidens*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

Global Threats:

1. Incidental Bycatch - False killer whales face significant threats from fishery interactions, with substantial mortality caused by longline, purse seine, and gillnet fisheries. In the U.S. Hawaii-based deep-set longline fishery, they are the most frequently recorded cetacean bycatch, with mortality exceeding sustainable levels for 10 of 12 years between 2003 and 2015 (Carretta et al., 2014; Forney & Kobayashi, 2007). Similar interactions occur worldwide, including the Indian Ocean, the Mediterranean, and the western Pacific (Kiszka et al., 2010; SPC-OFP, 2010; Dai, 2011). Incidental takes have been documented in gill nets

- across multiple countries, including Australia, India, Brazil, and China (Perrin *et al.*, 2005; Reeves *et al.*, 2013; Song, 2018).
- 2. Direct Hunting Drive and harpoon fisheries have historically decimated local populations, particularly in Japan and Taiwan. Between 1972 and 2008, 2,643 individuals were killed in Japan alone, with a single year's catch potentially representing 31% of the coastal population (Kasuya, 2017). False killer whales are occasionally taken at Saint Vincent for meat and oil (Caldwell & Caldwell, 1975), and deliberate shooting by fishermen in response to depredation occurs in various regions (Oleson *et al.*, 2010; Anderson, 2014).
- 3. Ecosystem and Prey Availability **Threats** - Declining prey populations due to overfishing and ecosystem changes pose significant risks to false killer whales. Large-scale reductions in predatory fish populations, including yellowfin and bigeye tuna, have been documented (Baum et al., 2003, 2005; Forney & Kobayashi, 2007). Expansion of unproductive areas and ecosystem changes potentially influence fish populations at multiple trophic levels, with unknown but potentially severe consequences for false killer whale populations (Polovina et al., 2008; Coll et al., 2008; Koslow et al., 2015).

4. Pollution Threats - Anthropogenic pollution presents multiple risks to false killer whales. Studies of the Hawaiian Islands insular population reveal PCB levels exceeding immunosuppression thresholds (Ylitalo et al., 2009; Foltz et al., 2014). High trace elements and mercury levels have been found worldwide, with toxic levels documented in Chile and Japan (Cáceres-Saez et al., 2018; Endo et al., 2010). Plastic ingestion poses another threat. with significant stranded individuals often found with discarded items in their stomachs (Scott et al., 2001).

16. INDO-PACIFIC HUMPBACK DOLPHIN

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea

Family : Delphinidae

Genus : Sousa

Species : S. chinensis

Osbeck, 1765

Common Tamil Name: சீன ஓங்கில்

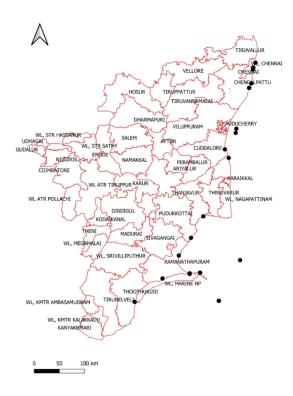
Key Identification Features:

- Robust body with a long slender beak and a slight melon on the forehead.
- Colouration is highly variable within populations. Generally, calves are born dark grey and become mottled with pink or entirely pink with age.
- Shape of the dorsal fin and hump varies with geographical distribution. Generally, the dorsal fin is short and curved situated on a wide dorsal hump that gradually slopes into the body.
- Flippers are broad, paddle-shaped, and round-tipped.
- Marked keels present above and below the thick tailstock.
- Flukes are well-developed and pointed at the tips with a distinct median notch.

General Ecology:

Indo-Pacific humpback dolphins (*Sousa chinensis* Osbeck, 1765) inhabit the coastal waters of the eastern Indian and western Pacific Oceans, with two recognised subspecies, *S. c. chinensis* (Chinese humpback dolphin) and *S. c. taiwanensis*

(Taiwanese humpback dolphin) (Parra & Jefferson, 2018; Society for Marine Mammalogy, 2021).


© Stephen Ng, some rights reserved (<u>CC BY-NC</u> 4.0)

Global distribution range of Indo-Pacific Humpback Dolphin (*Sousa chinensis*). Source: IUCN Red List Assessment (2017).

hese humpback dolphins reach a maximum length of 2.6–2.8m and weigh around 240–280 kg (Parra & Jefferson, 2018). typically live in small groups of fewer than ten individuals, although larger aggregations can occur near fishing vessels (Hung & Jefferson, 2004). They are opportunistic feeders, consume a variety of nearshore, estuarine, and reef fishes, as well as cephalopods, but rarely crustaceans (Jefferson & Karczmarski, 2001; Parra & Jefferson, 2018). Indo-Pacific humpback dolphins are generally found in tropical to

warm-temperate coastal waters, including bays, lagoons, and estuarine areas, and are rarely encountered in waters deeper than 20-30 meters (Ross *et al.*, 1994; Jefferson & Karczmarski, 2001). They display a wide variety of aerial behaviours, including leaps and somersaults. Predation of this species is very unlikely, except by certain large sharks (Parra & Jefferson, 2018).

Indo-Pacific Humpback Dolphin (*Sousa chinensis*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

Distribution:

Indo-Pacific humpback dolphins inhabit tropical to warm-temperate coastal waters, including open coasts, bays, coastal lagoons, rocky reefs, mangrove swamps, and estuarine areas, often found near sandbanks and mudbanks (Ross *et al.*, 1994; Jefferson & Karczmarski, 2001; Parra & Jefferson, 2018). They are typically encountered in shallow waters,

rarely exceeding depths of 20-30 meters or venturing more than a few kilometres from the shore (Jefferson & Karczmarski, 2001; Chen et al., 2007). Their distribution extends from central China, particularly near the mouth of the Yangtze River, southward through Southeast Asia and westward along the Bay of Bengal to the Orissa coast of eastern India (Jefferson & Rosenbaum, 2014). Indo-Pacific humpback dolphins are frequently found in enclosed seas, such as the Gulf of Thailand, with their highest densities observed in and around estuaries. Their distribution is fragmented, with significant stretches of coastline between river mouths often exhibiting low or zero dolphin densities (Jefferson & Karczmarski, 2001; Parra & Jefferson, 2018).

Global Threats:

1. Interaction with **Fisheries** Indo-Pacific humpback dolphins face threats significant primarily from incidental mortality in fishing gear, particularly gillnets and trawls (Ross et al., 1994; Jefferson & Karczmarski, 2001; Parra & Jefferson, 2018; Jaaman et al., 2009). In Bangladesh, a study revealed that 15% of individuals showed scars from entanglements (Smith et al., 2015). In the Eastern Taiwan Strait, over 30% of the subpopulation exhibited injuries from fishing gear, highlighting the critical threat posed by fishing activities on their population (Slooten et al., 2013). In Hong Kong, net entanglement and vessel collisions are the leading causes of human-induced mortality. Despite a trawling ban in 2013, illegal trawling exacerbating the bycatch persists. problem for these dolphins (Jefferson, 2000; Parsons & Jefferson, 2000; Jefferson *et al.*, 2006).

2. Environmental Contamination Environmental contamination is another significant threat, particularly industrialised regions like China. High concentrations of organochlorines, such as DDTs and PCBs, have been found in cetaceans from Hong Kong, potentially affecting reproductive success (Parsons & Chan, 1998; Minh et al., 1999; Gui et al., 2014). Although pollutants may not immediate mortality, long-term effects on health and survival concerning (Parsons, 2004; Jefferson et al., 2006).

3. Marine **Development** and Vessel **Traffic** Marine development activities, including construction projects and reclamation, can lead to habitat loss and behavioural disturbances for Indo-Pacific humpback dolphins (Würsig et al., 2000; Jefferson et al., 2009; Hung, 2014). Excessive vessel traffic, particularly high-speed ferries, alters dolphin distribution and behaviour, potentially interfering with their communication (Sims et al., 2012; Piwetz et al., 2012; Hung, 2014). When by scientific guided research, implementing mitigation measures can help reduce these impacts (Jefferson et al., 2009).

17. PANTROPICAL SPOTTED DOLPHIN

Taxonomy:

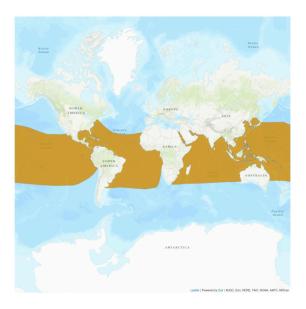
Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea
Family : Delphinidae
Genus : Stenella

Genus : Stenella
Species : S. attenuata
Gray, 1846

Key Identification Features:

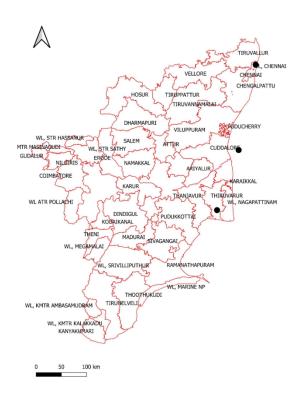
- Dark or steely grey body on top with lighter flanks and underside.
- Pale and dark spots cover the body, increasing with age.
- Sharp crease between the forehead and a long, narrow beak with a white tip and 'lips.'
- Dark band runs from the upper jaw to the eye, extending to the flippers.
- Small, strongly curved flippers with pointed tips; dark on both sides.
- Dark grey dorsal fin, strongly curved and narrow.
- Distinct keel below the tail stock.
- Flukes are small, pointed at the tips, with a small median notch.


General Ecology:

Pantropical spotted dolphins (*Stenella attenuata*Gray, 1846) are one of the most abundant dolphin species in the world, found in all temperate and tropical oceans. The pantropical spotted dolphin is very active and prone to making large, splashy leaps from the sea. They are known for their playful behaviour, such as

breaching and bow-riding, and exhibit significant variation in size and colouration across their range.

© Joseph Ferris III, some rights received (<u>CC</u> BY-2.0)



Global distribution range of Pantropical Spotted Dolphin (*Stenella attenuata*). Source: IUCN Red List Assessment (2012).

These dolphins are born about 0.8 m and grow around 2-2.5 m in length (Perrin, 2009). Two subspecies are recognised: the offshore S. a. attenuata and the coastal S. a. graffmani (Society for Marine Mammalogy 2021). Coastal dolphins are larger and more spotted. with spots being characteristic in adults, while juveniles are uniformly coloured (NOAA Fisheries: Pantropical Spotted Dolphin). In the eastern Pacific and southwestern Indian Ocean, they form multi-species groups with spinner dolphins and yellowfin tuna, enhancing vigilance against predators (Scott & Cattanach, 1998; Kiszka *et al.*, 2011b; Scott *et al.*, 2012). Their diet includes small epipelagic fish, squid, and crustaceans, with flying fish being important in some regions (Robertson & Chivers, 1998; Kiszka *et al.*, 2011a). Coastal subspecies likely consume larger, possibly bottom-dwelling fish (Perrin, 2001, 2009).

Distribution:

Pantropical spotted dolphins inhabit tropical and subtropical waters across the Indian, Atlantic, and Pacific Oceans, predominantly between 40°N and 35°S latitudes (Perrin, 2009; Jefferson *et al.*, 2011).

Pantropical Spotted Dolphin (*Stenella attenuata*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

The offshore S. a. attenuata is particularly abundant in lower-latitude regions, extending into enclosed seas like the Red Sea and the Persian Gulf but excluding the Mediterranean (Notarbartolo di Sciara et al., 2017). These dolphins occupy diverse oceanic habitats, from coral reef outer slopes to open ocean waters, and are commonly found around oceanic islands and archipelagos, including the Hawaiian Islands, Marquesas, Caribbean Sea, and Indian Ocean islands (Ballance & Pitman, 1998; Gannier, 2002; Baird et al., 2013). Population centres typically concentrate in warm waters exceeding 25°C, particularly in areas with high-temperature gradients (Courtin et al., 2022, 2023). Historical documents contain numerous records of pantropical spotted dolphin sightings in India (Sathasivam, 2000). The recent theFisheries Survey of India, indicate population of marine mammals including pantropical spotted dolphins (Gopal, 2023).

Global threats:

1. Tuna **Fishery Impacts** The northeastern offshore population of pantropical spotted dolphins in the Eastern **Tropical Pacific** (ETP) experienced catastrophic mortality from tuna purse seine fishing between the late 1950s and 1980s. Approximately five million dolphins were killed during 1959-1972, with three million from the northeastern offshore population alone 1996). Although (Wade, the Inter-American Tropical Tuna Commission (IATTC) implemented limits, reducing mortality annual dolphin deaths to 238 by 2016, recovery remains slow (IATTC, 2017; Gerrodette et al., 2008). Potential recovery impediments include

- fishery-related stress, unobserved mortality from calf separation, potential unreported deaths from small vessels, and broader ecosystem changes (Gerrodette & Forcada, 2005; Archer *et al.*, 2001).
- 2. Global Fishery Bycatch Pantropical significant dolphins face bycatch threats across marine regions. In the eastern tropical Atlantic and western Indian Ocean, purse seine fishery data suggest relatively low bycatch numbers (Escalle et al., 2015). However, gillnet fisheries substantial risks, with documented in diverse locations the Arabian Sea, Zanzibar, Central American coastlines, Chinese waters, and the Philippines (Amir et al., 2002; Palacios & Gerrodette, 1996; Yang et al., 1999; Dolar, 1994).
- 3. Direct Hunting and Consumption spotted dolphins Pantropical are systematically hunted in regions for human consumption. Japan's coastal fisheries documented extensive culling, with Kasuya (2017) reporting 27,000 dolphins killed between 1972 and 2008, peaking in 1978 with 4,184 and 1982 with 3,799 individuals. Similar hunting practices occur in the Philippines, India, Sri Lanka, and the Solomon Islands (Dolar et al., 1994; Ross et al., 2003; Perrin, 2009). The Solomon Islands' Fanalei villagers alone killed 15,454 dolphins from 1976 to 2013, with 1,500 pantropical spotted dolphins taken in March 2013 (Oremus et al., 2015). Madagascar's southwest coast also experiences significant drive hunts, with over 6,000 dolphins taken between 1985 and 1999 in a single village (Andrianarivelo, 2001).

18. STRIPED DOLPHIN

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

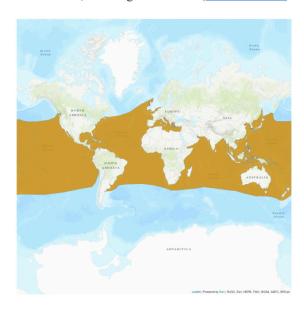
Infraorder : Cetacea
Family : Delphinidae
Genus : Stenella

Species : S. coeruleoalba

Meyen, 1833

Key identification features

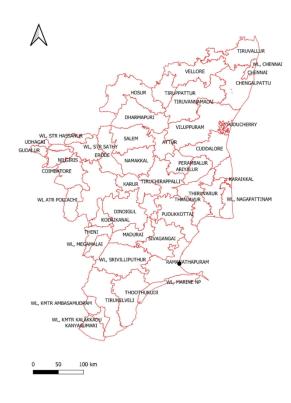
- Dark grey cape divided by lighter streak moving up towards the dorsal fin.
- Smooth sloping forehead with a crease between the forehead and the beak.
- Dark prominent beak with crease between beak and forehead.
- One or two dark bands between eye and flippers.
- Dark, strongly curved dorsal fin that is situated midback.
- Small slender flippers, dark on both sides, and contrasting with the white or pink underside.
- Narrow, pale grey tail stock with small, thin tail flukes and a slight median notch.


General Ecology:

Striped dolphins (*Stenella coeruleoalba* Meyen, 1833) inhabit temperate and tropical waters worldwide, mainly in oceanic regions beyond the continental shelf. They also live near the shore where deep waters are close to the coast. They are robust in size and measure around 2.2-2.5 m in length and weigh between 100-150 kg (Jefferson *et al.*, 2011; Archer, 2018). They

are similar in size and shape to other dolphins, like the pan tropical and Atlantic spotted dolphins, but their distinct colouring makes them easily noticeable at sea.

© Wanax01, some rights reserved (CC BY-SA 4.0)



Global distribution range of Striped Dolphin (*Stenella coeruleoalba*). Source: IUCN Red List Assessment (2012).

Known for their acrobatics, striped dolphins often travel in large groups and form mixed-species groups with common dolphins (Forcada & Hammond, 1998; Bearzi et al., 2016). They prefer waters between 18°C and 22°C, associating with productive upwelling areas and oceanic currents (Archer & Perrin, 1999; Ross, 1984). Their diet includes small midwater and pelagic organisms, such as lanternfish, squid, sardines, and with varying preferences by region (Würtz & Marrale, 1993; Saavedra *et al.*, 2022). In the Mediterranean, they are linked to productive waters, while in the North Atlantic, they favour continental slope waters (Notarbartolo di Sciara *et al.*, 1993; Leatherwood *et al.*, 1976).

Distribution:

Striped dolphins are widely distributed across tropical to warm-temperate waters of the Atlantic, Pacific, and Indian Oceans, ranging approximately between 50°N and 40°S (Jefferson et al., 2011; Archer, 2018). Their distribution encompasses numerous marine regions. including the with Mediterranean Sea. occasional extralimital records from the Kamchatka Peninsula, southern Greenland, and Iceland (Notarbartolo di Sciara et al., 2017).

Striped Dolphin (*Stenella coeruleoalba*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

In European waters, they are primarily found in the Eastern North Atlantic, North Sea, and Macaronesian archipelagos, with significant populations along the Iberian Peninsula and south of the British Isles (Hammond et al., 2017; Santos et al., dolphins predominantly These inhabit waters with temperatures ranging from 18-22°C, thriving oceanic environments across multiple regions, though population densities varv considerably (Panigada, 2021). Records of striped dolphins on Indian coasts are historical (Alling, 1986), but recent incidents have also been recorded ('Dolphin population rises...', 2023; 'Injured dolphin rescued...', 2024).

Global threats:

- 1. Direct Hunting Striped dolphins face significant direct mortality from human activities. particularly in Japanese waters. Historical catch statistics reveal annual recorded catches between 1978 and 1993 ranging from 1,000 to 4,000, with an exceptional peak of 16,344 in 1990 (Kasuya, 2017). An annual quota of 1,000 dolphins was established in 1992 and subsequently reduced to 725 in 1993, with minor annual decreases since 2006. Similar, hunting occurs in Taiwan, Solomon Islands, Sri Lanka, and St. Vincent and the Grenadines ly(Oremus et al., 2015; Ilangakoon et al., 2000a, b). Illegal catches were documented in southern Spain until the mid-2000s, indicating widespread historical hunting practices across multiple regions (Aguilar, 2006).
- 2. Fishery Bycatch Striped dolphins experience substantial bycatch mortality across their global range. Documented incidents occur in purse seines, gillnets, large mesh pelagic

driftnets, and pelagic longline fisheries in the northeastern Indian Ocean. Eastern Tropical Pacific, northeastern Atlantic, Mediterranean, and north Pacific (Archer & Perrin, 1999). High seas drift gillnet fisheries in the north Pacific were particularly destructive, with approximately 3,000 individuals taken in 1990 alone (Hobbs & Jones, 1993). Mediterranean driftnet fisheries continue to pose significant risks, with estimates suggesting 1,555-2,092 Striped dolphins killed by Moroccan boats in 2003, and historical Italian fisheries reportedly killing 5,000-15,000 dolphins annually in the 1980s (Tudela et al., 2005; Di Natale, 1992).

3. Environmental **Contamination** Mediterranean striped dolphins face severe environmental contamination. Tissue levels of organochlorine compounds, heavy metals, and selenium consistently exceed 'safe' threshold levels for mammals (Cardellicchio et al., 2000; Storelli et al., 2012). Blubber concentrations of DDT and PCB remain high, with potential reproductive and immunological impacts. Similar high concentrations have been reported in Japanese specimens (Tanabe et al., 1983). **PBDEs** were particularly elevated in Mediterranean populations (Marsili et al., 2018). These contaminants are associated with physiological numerous effects, including anaemia, immunosuppression, endocrine disruption, reproductive and impairment (Jepson et al., 2016).

4. Disease and Population Vulnerability

- Striped dolphins have experienced devastating mass mortality events,

particularly in the Mediterranean Sea. Morbillivirus infections in 1990-1992 and 2006-2007 resulted in thousands of deaths. significantly impacting population dynamics (Domingo et al., 1995; Keck et al., 2010). These epizootics may have been exacerbated by environmental factors, including high levels of organochlorine pollutants that potentially compromised immune systems (Aguilar & Borrell, 1994). Additional population pressures include depletion potential prey from commercial fishing and climate-induced habitat changes (Aguilar & Gaspari, 2006; MacLeod et al., 2005).

19. SPINNER DOLPHIN

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea

Family : Delphinidae Genus : Stenella

Species : S. longirostris

Gray, 1828

Common Tamil Name: கிண்கிணி ஓங்கில்

Key Identification Features:

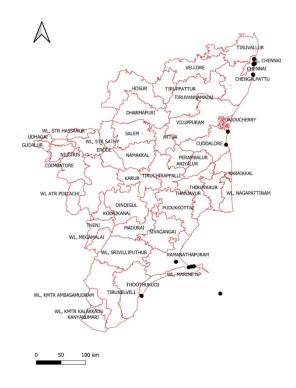

- They have a slender, torpedo-shaped body.
- They exhibit a distinct three-banded body colouring, featuring parallel bands of a dark cape, light grey flanks, and a very pale belly.
- Their slightly rounded forehead is complemented by a long, slender beak that is dark on the top and light on the bottom
- The dolphins possess slender, curved flippers with pointed tips, which are dark on both the top and bottom.
- A dark band runs between the upper jaw and the eye, extending to the flippers.
- They have a triangular, erect, and slightly curved dorsal fin.
- Males may display a bulge or keel on the underside toward the tail.

General Ecology:

Spinner dolphins (*Stenella longirostris* Gray, 1828) are small dolphins found in offshore tropical waters worldwide, known

© Liisa Havukainen, some rights reserved (<u>CC</u> <u>BY-SA 3.0</u>)

Global distribution range of Striped Dolphin (*Stenella longirostris*). Source: IUCN Red List Assessment (2012).


for their acrobatic displays. Currently, four subspecies are recognized: Eastern spinner (*S. l. orientalis*), Central American or Costa Rican spinner (*S. l. centroamericana*), Hawaiian spinner (*S. l. longirostris*), and Dwarf spinner (*S. l. roseiventris*). Sexually mature adults examined ranged from 1.2-2.3 m and weighed 23–80 kg, with males on average slightly larger than females in body size (Perrin, 2009). They primarily feed on small mesopelagic fish, squids, and sergestid shrimps, diving up to 200-300 meters to catch prey (Dolar *et al.*, 2003). Hawaiian spinner dolphins are nocturnal feeders, foraging in deep

scattering layers while resting during the day (Perrin et al., 1989). Preyed upon by sharks, they also face threats from killer whales, false killer whales, pygmy killer whales, and short-finned pilot whales (Norris et al., 1994). They are known for their acrobatics, performing spins during leaps involving two to seven rotations. These spins may serve several functions, including acoustic signalling communication (Fish et al., 2006; NOAA Dolphin). Fisheries: Spinner Socially, dolphins exhibit spinner loose organization, with strong bonds between mothers and calves, while adult males often form coalitions of up to a dozen individuals (Norris et al., 1994). Their vocalizations include whistles for organizing schools, burst-pulse signals, and echolocation clicks (Brownlee & Norris, 1994).

Distribution:

Spinner dolphins inhabit tropical and subtropical waters between 40°N and 40°S across the Pacific, Atlantic, and Indian Oceans, including the Persian Gulf and the Red Sea, but are absent from the Mediterranean (Jefferson et al., 1993). While primarily coastal, they can also be found far offshore in the Eastern Tropical Pacific (Au & Perryman, 1985). The subspecies S. l. longirostris is the most widespread, occurring in tropical waters of the Atlantic, Indian, and central and western Pacific Oceans, particularly around oceanic islands and coastlines (Rice, 1998). In contrast, S. l. roseiventris inhabits shallower waters of inner Southeast Asia, including the Gulf of Thailand and the Timor Sea, being replaced by S. l. longirostris in deeper areas (Perrin et al., 1999). In the eastern tropical Pacific, they prefer "tropical surface water" with a shallow mixed layer, sharp thermocline,

and minimal annual temperature variation (Perrin & Gilpatrick, 1994). School sizes range from a few individuals to over a thousand, typically larger in pelagic than inshore waters (Perrin, 2018). Spinner dolphins are well documented in Indian waters (Sathasivam, 2002), and are even considered as tourist attractions in certain parts of Tamil Nadu (Newport, 2023).

Spinner Dolphin (*Stenella longirostris*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

Global threats:

1. Incidental Bycatch - Spinner dolphins, being one of the most common cetaceans in tropical oceanic regions, are frequently caught as bycatch in purse-seine, gillnet, and trawl fisheries (Perrin *et al.*, 1994; Donahue & Edwards, 1996). They are the most abundant dolphins in the Indian Ocean (Ballance & Pitman, 1998) and are captured in significant but largely

- unknown numbers, partly due to their association with tuna (Anderson, 2014). In India, bycatch levels of hundreds of spinner dolphins were reported in the 1980s and early 1990s (Mohan, 1994), while Sri Lanka reported annual captures in the thousands during the same period (Leatherwood & Reeves, 1989).
- 2. **Direct Hunting -** Accidentally captured dolphins are often consumed or used as bait in shark fisheries, which has, in some cases, led to targeted hunting (Robards & Reeves, 2011; Kiszka, 2009). This bycatch has resulted in deliberate gillnetting of spinner dolphins in regions such as Sri Lanka (Leatherwood & Reeves, 1989), the Philippines (Dolar, 1994), and Indonesia (Kahn, 2004). Additionally, intentional hunting of spinner dolphins has been reported in Madagascar (Cerchio et al., 2011), West Africa (Van Waerebeek et al., 1999), and the Solomon Islands (Oremus et al., 2015). Between 1960 and 1972, over 4 million dolphins, primarily pantropical spotted dolphins and spinner dolphins, were killed in the yellowfin tuna purse-seine fishery of Eastern Tropical Pacific. This fishery is estimated to have reduced the Eastern Spinner population by 65% (Gerrodette, 2009; Wade et al., 2007; Reilly et al., 2005).
- **3. Tourism -** Non-consumptive threats to spinner dolphins primarily arise from dolphin-watching tourism. Due to their gregarious nature and acrobatic behaviour, spinner dolphins are targeted boat-based for and 'swim-with-the-dolphins' tourism in locations such as Hawaii, Egypt, and French Polynesia (Gannier & Petiau, 2006; Tyne et al., 2017; Notarbartolo et al., 2017). Harassment from dolphin-watching boats is becoming a significant disturbance in several areas of Oceania and Southeast Asia. In West Hawaii, abundance estimates from 2011 and 2012 were lower than in previous years, suggesting a potential long-term impact of dolphin-centred tourism on local populations (Tyne et al., 2015, 2017).

20. ROUGH-TOOTHED DOLPHIN

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla
Infraorder : Cetacea

Family : Delphinidae Subfamily : Stenoninae

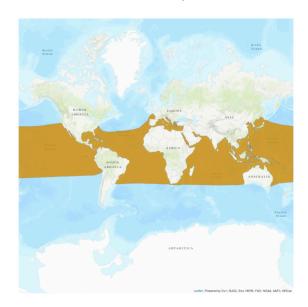
Genus : Steno

Species : S. bredanensis

G. Cuvier in Lesson, 1828

Key Identification Features:

- Small head with a long beak, lacking a noticeable crease between the beak and forehead.
- Colouration varies but is typically black to dark grey on the back and light grey to white on the belly, often with lighter spots or blotches underneath.
- A dark, narrow cape extends over the eyes and arches high on the sides of the body.
- Flippers are long, large, and rounded at the tips.
- Dorsal fin is large, tall, and hooked or sickle shaped.
- Flukes are small, rounded at the tips, with a well-defined median notch.


General Ecology:

Rough-toothed dolphins (*Steno bredanensis*) are marine dolphins found in warm, tropical waters worldwide. It is the sole member of its genus with no recognised subspecies, named *Steno* from the Greek for 'narrow,' referring to its distinctive beak. Found in warm temperate and tropical

waters worldwide, they inhabit deep waters over 1,000 meters typically but can also be found in shallower areas like the continental shelf.

© Laurent Bouveret, some rights reserved (<u>CC</u> <u>BY-SA 4.0</u>)

Global distribution range of Rough-toothed Dolphin (*Steno bredanensis*). Source: IUCN Red List Assessment (2012).

They weigh up to 155 kg, males growing larger than females (maximums records of 2.5-2.6 m) but females may have proportionately longer beaks (Ritter, 2002; Jefferson, 2009; West *et al.*, 2011). They usually form small groups of 5-15, though larger groups are sometimes observed (Gannier & West, 2005; Baird, 2016). Their diet consists of oceanic and coastal fish and cephalopods, occasionally including large pelagic fish like dolphinfish (Pitman &

Stinchcomb, 2002; West *et al.*, 2011). They are known to associate with various cetacean species like common bottlenose dolphins, spinner dolphins, melon-headed whales, false killer whales, short-finned pilot whales, and humpback whales (West *et al.*, 2011).

Distribution:

Rough-toothed dolphins inhabit oceanic tropical and warm temperate waters across the Pacific, Atlantic, and Indian Oceans, predominantly ranging between 40°N and 35°S (Jefferson, 2009; Miyazaki & Perrin, 1994). Their distribution encompasses diverse marine environments, including the Gulf of Mexico, the Caribbean Sea, the Red Sea, and the Gulf of California (Watkins *et al.*, 1987; Notarbartolo di Sciara *et al.*, 2017).

Rough-toothed Dolphin (*Steno bredanensis*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

While primarily occupying deep, offshore waters, they occasionally inhabit shallow regions coastal near Brazil, Japan, Honduras, West Africa, and the Canary **Islands** (Jefferson, 2009). The Mediterranean population represents a small, isolated subpopulation primarily concentrated in the eastern basin, between the Ionian Sea and the Levantine Basin (Kerem et al., 2016; Kiszka et al., 2019). European Atlantic waters demonstrate a gradient of presence, with regular year-round sightings in the Canary Islands, seasonal summer visits to Madeira, and rare appearances in the Azores (Carrillo et al., 2010; Freitas et al., 2012). Reports of rough-toothed dolphins in Indian waters are rare, notably documented Lakshadweep ('Rough-toothed dolphins...', 2022) and Karnataka (Anoop et al., 2015), with very few records along the eastern coast (MMRCNI).

Global threats:

1. Direct Hunting -Rough-toothed dolphins face significant threats from opportunistic hunting across regions. Small numbers have been taken in directed hunts in the Solomon Islands, Sri Lanka, Taiwan, West Africa, Japan, and other locations (Caldwell & Caldwell, 1975; Miyazaki & Perrin, 1994; Perrin et al., 2005). In Japan, historical records reveal substantial mortality, with drive fisheries off the Izu Peninsula killing at least 80 dolphins between 1932 and 1972. Four individuals were explicitly recorded as taken by hand harpoon fishermen in Wakayama Prefecture in 1991. highlighting the persistent nature of these hunting practices across different geographical contexts (Kasuya, 2018).

- 2. Bycatch and Entanglement Bycatch represents a significant mortality source for rough-toothed dolphins across diverse marine environments. In the Eastern Tropical Pacific, 21 dolphins were estimated to be killed between 197175, with 36 dying in a single net haul in 1982. Regional studies reveal substantial bycatch rates: Ghana reported these dolphins comprising 6.1% of cetacean gillnet catches (Van Waerebeek et al., 2009; Debrah et al., while northeastern 2010). recorded 13 strandings likely due to gillnet entanglement (Monteiro-Neto et al., 2000). stranding reports emerged from the eastern Mediterranean Sea (Kerem et al., 2016), indicating widespread bycatch issues in tropical and warm-temperate waters globally.
- 3. Fishery Interactions Fishery interactions pose a critical threat to rough-toothed dolphins worldwide. These marine mammals frequently interact with fishing gear, often removing bait and catch from longlines, which can result in injury or retaliatory actions (Oremus et al., 2012; Baird, In American Samoa, 2016). dolphins were reported injured in deep-set longline fisheries between 2008 and 2012, representing almost half of the cetacean interactions in that region (Bradford & Forney, 2014; Hayes et al., 2017). Alarmingly, Mintzer et al. (2018) rinstances where rough-toothed dolphins are even used as bait in longline fisheries, further demonstrating the complex and harmful interactions with human maritime activities
- **4. Environmental Contamination** Environmental contamination presents

another significant threat to dolphins. rough-toothed Worldwide studies have detected relatively high levels of heavy metals and persistent organic pollutants in their tissues. The eastern Mediterranean population showed measurable PCB/DDT and mercury/cadmium concentrations (Marsili & Focardi, 1997: Shoham-Frider et al., 2014). Microplastic ingestion has also been documented, with rough-toothed dolphins found with plastics in their stomachs in the Canary **Islands** (Puig-Lozano et al., 2018). Anthropogenic noise and potential impacts from seismic and naval activities further compound these environmental stressors, with mass strandings potentially linked to such disturbances (Kerem et al., 2016).

21. INDO-PACIFIC BOTTLENOSE DOLPHIN

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea
Family : Delphinidae
Genus : *Tursiops*Species : *T. aduncus*

Ehrenberg, 1833

Key Identification Features:

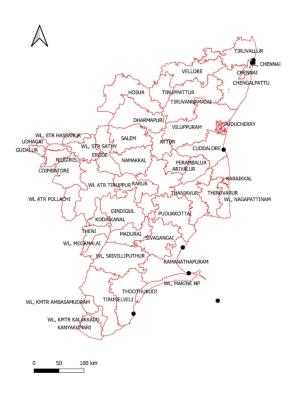
- Dorsal surface is slate blue or dark grey, with lighter extremities and underside.
- Sharp crease between the beak and gently curving forehead.
- Pronounced beak, generally slender and long, that can vary in thickness and length.
- Prominent recurved dorsal fin with a slightly hooked tip and a broad base.
- Moderately long dark slender flippers with pointed tips and broad base.
- Thick tail stock with well-developed flukes and distinct median notch.

General Ecology:

Indo-Pacific bottlenose dolphins (*Tursiops aduncus* Ehrenberg, 1833) are a distinct species, recognised separately from the common bottlenose dolphin in 1998 (Möller & Beheregaray, 2001; Wang & Yang, 2009). Typically growing to 2.6 m and weighing up to 230 kg, it features a dark grey back and a lighter grey or nearly white belly with grey spots (Shirihai *et al.*, 2006). This species is generally smaller than the common bottlenose dolphin,

possessing a longer rostrum and more teeth (Reeves *et al.*, 2002; Wang & Yang, 2009).

© Aude Steiner, some rights reserved (<u>CC BY-SA</u>
1.0)


Global distribution range of Indo-Pacific Bottlenose Dolphin (*Tursiops aduncus*). Source: IUCN Red List Assessment (2008).

Indo-Pacific bottlenose dolphins primarily feed on a diverse diet of schooling, demersal, reef fishes, and cephalopods, mainly squid (Amir et al., 2005; Ross, 1984; Yamazaki et al., 2008). They often form groups of five to 15 but can aggregate in hundreds, sometimes associat with other dolphin species, including common bottlenose humpback and dolphins (Jefferson et al., 2011; Koper & Plön, 2016). Mating and calving peak in spring and summer, with a gestation period of about 12 months (Shirihai et al., 2006). In

some areas, they face predation from sharks (Reeves *et al.*, 2002).

Distribution:

Indo-Pacific bottlenose dolphin The warm-temperate tropical inhabits and waters throughout the Indo-Pacific region, exhibiting a discontinuous distribution pattern. These dolphins primarily occupy shallow coastal waters, estuarine waters and reef complexes (Jefferson et al., 2011). Their range extends from coasts through Southeast Asia, including the Malay Archipelago and Cocos Islands, reaching northward to China, the Korean Peninsula, and southwestern Japan.

Indo-Pacific Bottlenose Dolphin (*Tursiops aduncus*) along Tamil Nadu (black dots). Data source:
Sighting and Strandings Database, Marine
Mammals Research & Conservation Network of
India (2025).

They are also found along the northern Indian Ocean, including the Red Sea and Arabian/Persian Gulf, with their western limit at eastern South Africa (Wells & Scott, 2002; Möller & Beheregaray, 2001; Jefferson et al., 2011). Additionally, these dolphins are present in the coastal waters of numerous oceanic islands distant from major landmasses, including the Maldives (Andersen et al., 2012), Andamans (Malakar et al., 2015), New Caledonia (Borsa, 2006), Comoros and Mayotte (Kiszka et al., 2010, 2012), Solomon Islands (Oremus et al., 2015), La Réunion (Dulau-Drouot et al., 2008), Mauritius (Webster et al., 2014), and the Seychelles (Kiszka, 2015). Historical records are scant owing to the confusion over common and Indo-Pacific bottlenose dolphins, but there have been plenty of recent sightings and strandings (MMRCNI).

Global threats:

1. Incidental Bycatch - Bycatch is a significant threat to Indo-Pacific bottlenose dolphins across their range. albeit limited data on mortality rates makes it difficult to assess the full impact. In Australia, bycatch occurs at popular beaches in trawls, gillnets, and shark nets (Hale, 1997; Paterson, 1990). In Taiwan, the use of dolphins as bait in fisheries is more widespread than recorded (Mintzer et al., 2018). Historical data indicate that Taiwanese shark and tuna gillnet fishery, active until 1986, caused significant dolphin bycatch, impacting local populations (Harwood Hembree, 1987; Young & Iudicello, 2007). In Japan, unsustainable bycatch in gillnets threatens local populations (Shirakihara & Shirakihara, 2012). Similar issues are reported in Bangladesh, Zanzibar, and other where bycatch rates regions, unsustainable (Mansur et al., 2012; Amir, 2010; Temple et al., 2019).

- 2. Direct Exploitation Indo-Pacific bottlenose dolphins face threats from direct exploitation, including hunting live capture for captivity. Historically, they were targeted in drive fisheries in Taiwan and Madagascar (Kasuya, 2017; Jefferson & Curry, 2016). In Madagascar, hunting for local consumption and sale of meat has significantly impacted populations (Andrianarivelo, 2001). Live captures for oceanarium displays have occurred in several countries, with unsustainable removal levels reported in the Solomon Islands (Oremus et al., 2013; Reeves & Brownell, 2009). Despite prohibitions, hunting persists in regions Myanmar and the Seychelles (Tun, 2006; Kiszka, 2015).
- 3. Environmental Threats and Climate **Change -** The near-shore distribution of Indo-Pacific bottlenose dolphins makes them vulnerable to environmental degradation and pollution. In South Africa, high levels of persistent organochlorines have been found in dolphins, raising health concerns (Kannan et al., 2000; Gui et al., 2016). In Zanzibar and La Réunion, pollutants like DDTs and PCBs are present at varying levels (Mwevura et al., 2010; Dirtu et al., 2016). Diseases such as morbillivirus and lobomycosis-like conditions are increasing, potentially linked to habitat degradation (Kemper et al., 2016). In Shark Bay, Western Australia, a marine heatwave in 2011 led to significant habitat loss and a decline in dolphin reproductive rates (Wild et al., 2019).

22. COMMON BOTTLENOSE DOLPHIN

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla

Infraorder : Cetacea
Family : Delphinidae
Genus : Tursiops
Species : T. truncatus
Montagu, 1821

Common Tamil Name: போத்தல் முக்கு ஓங்கில்

Key Identification Features:

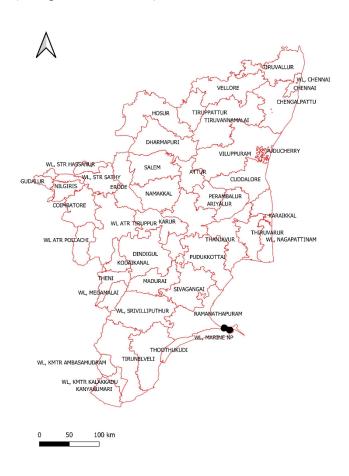
- Dark grey dorsal colouration with off white/light grey ventral colouration.
- Sharp crease between the beak and forehead.
- Pronounced bottle-shaped beak, lower jaw extends beyond upper jaw.
- Tall falcate dorsal fin with a slightly hooked tip and a broad base.
- Dark medium sized slender flippers with pointed tips and broad base.
- Thick tail stock with relatively small tail flukes and distinct median notch.

General Ecology:

Common bottlenose dolphins (*Tursiops truncatus* Montagu, 1821) are one of the three species the genus *Tursiops*. They inhabit temperate and tropical oceans worldwide, except polar waters (Wilson *et al.*, 1999; Leatherwood & Reeves, 2012). There are four recognised subspecies: *T. t. truncatus* (nominate subspecies), *T. t. gephyreus* (Lahille's bottlenose dolphin), *T.*

t. nuuanu (Eastern Tropical Pacific bottlenose dolphin), and T. t. ponticus (Black Sea bottlenose dolphin) (Society for Marine Mammalogy, 2021).

National Aeronautics and Space Administration
 (NASA)


Global distribution range of Common Bottlenose Dolphin (*Tursiops truncatus*). Source: IUCN Red List Assessment (2019).

Adult lengths range from about 2.5-3.8 m, varying by location (Wells & Scott, 2009). Highly social, these dolphins live in pods typically numbering about 15 individuals, though groups can range from pairs to over 1,000 for short periods (Shirihai *et al.*, 2006). Their diet mainly includes eels, squid, shrimp, and various fish species (Wells & Scott, 2009). Pods often

collaborate to hunt schools of fish, but they also hunt individually. Echolocation is primarily used to locate prey (Paradell *et al.*, 2019), and they communicate through sounds like squeaks and whistles, as well as body language, such as leaping and tail slapping (Janik, 2000). abrain than humans (Marino *et al.*, 2007), with studies showing their considerable intelligence, contributing to their popularity in aquarium shows and television (Reiss & McCowen, 1993; Perrin *et al.*, 2009; Marten & Psarakos, 2006).

Distribution:

Common bottlenose dolphins are distributed globally across tropical and temperate inshore, coastal, shelf, oceanic waters (Leatherwood & Reeves, 2012; Wells & Scott, 2009; Reynolds et al., 2013). Coastal populations inhabit warm, shallow waters, adapting with smaller flippers bodies and larger manoeuvrability and heat dispersal, while offshore populations, larger and darker, are suited to cooler, deeper waters, capable of long migrations and deep diving (Wells & Scott, 2009; Shirihai et al., 2006). They range as far north as the Faroe Islands in northern Europe (Bloch & Mikkelsen, 2000) and as far south as 53-55°S in South America (Olavarría et al., 2010; Goodall et al., 2011). In the eastern Pacific, they have been observed up to 50°N, reaching British Columbia, though their typical range extends to 41°N (Halpin et al., 2018). The species is rare in the Baltic Sea and considered vagrant to Newfoundland and Norway (Wells & Scott, 2009). They are regularly found in the Red (Notarbartolo di Sciara et al., 2017) and the Arabian Sea (Baldwin et al., 1998). Historical records of common bottlenose dolphins along the Indian coasts are plenty (Sathasivam, 2000), with more recent records predominantly reported from Orissa (Senapati, 2022, 2024).

Common Bottlenose Dolphin (*Tursiops truncatus*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

Global threats:

1. Fishery-related Mortality - Common bottlenose dolphins frequently become entangled in various fishing gears, such as gillnets, trawls, and longlines, posing significant threats to their populations (Wells & Scott, 2009; Wells *et al.*, 2008). Entanglements in set nets and driftnets are particularly problematic in the Mediterranean, with reports from countries like Algeria, Croatia, and Italy (Bearzi *et al.*, 2008; Di Natale & Notarbartolo di Sciara, 1994). These entanglements can lead to injury or

- death, and the impact is often underreported. Incidental bycatch is a major concern, as dolphins are often caught unintentionally in fishing operations. In Peru, dolphins are caught in gillnets and sometimes used as bait (Mangel *et al.*, 2010). Although the scale of bycatch is poorly documented, evidence suggests it is unsustainable in some regions (Brotons *et al.*, 2008).
- 2. Boat **Traffic** and Acoustic Disturbance - Expanding boating and shipping in the Mediterranean has led to permanent or temporary avoidance of certain areas by bottlenose dolphins, about habitat raising concerns disruption and direct collisions (Dobler, 2002; Fortuna, 2007). Boat strikes pose an increasing threat to these dolphins, especially in regions with high levels of recreational and commercial traffic. Similar adverse effects have been observed globally, with boat strikes resulting in injury or death (Allen & Read, 2000; Lusseau, 2004, 2005). Additionally, noise from various human activities, such as seismic surveys, dredging, drilling, underwater explosions, and military or other sonars, significant is also concern (Richardson et al., 2013; Nowacek et al., 2007).
- 3. Contamination and **Outbreaks** Bottlenose dolphins are exposed to high levels of contaminants, such as PCBs and DDT. which can lead reproductive disorders and immune system suppression (Lahvis et al., 1995; Schwacke et al., 2002). In the Mediterranean, contaminant levels are exceptionally high, posing significant health risks (Corsolini et al., 1995;

- Aguilar *et al.*, 2002). Specific epizootic outbreaks have been linked to immune system compromise from contaminants and stress (Aguilar & Borrell, 1994). Morbillivirus has caused several mass mortality events among bottlenose dolphins, notably in the western North Atlantic and Gulf of Mexico (Rowles *et al.*, 2011). During outbreaks, hundreds to thousands of dolphins have died, with actual mortality likely higher than documented (Williams *et al.*, 2011).
- **4. Prev Depletion -** Overfishing has led to significant declines in prey availability for bottlenose dolphins, particularly in the Mediterranean, where many fish stocks are overexploited (Bearzi et al., 2008; Caddy & Griffiths, 1990). This reduction in prey has contributed to lower dolphin densities in areas like the Adriatic and Ionian Seas, densities remain higher where prev is abundant. Environmental degradation further exacerbates these challenges, impacting the dolphins' habitat and food sources. (Bearzi et al., 2008).

23. INDO-PACIFIC FINLESS PORPOISE

Taxonomy:

Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Artiodactyla
Infraorder : Cetacea

Family : Delphinidae
Genus : Neophocaena
Species : N. phocaenoides

G. Cuvier, 1829

Common Tamil Name: துடுப்பில்லா கடற்பன்றி

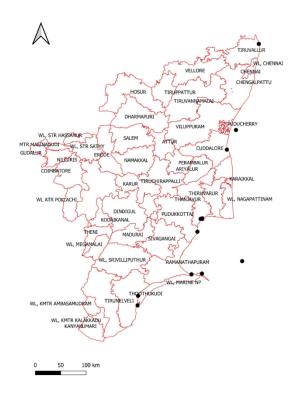
Key Identification Features:

- The body exhibits a uniform light grey coloration with a bluish tinge and lighter off-white ventral surface.
- The lips and chin display a lighter coloration compared to the rest of the body.
- The small, streamlined body lacks a dorsal fin but features a midline dorsal ridge.
- The area posterior to where the dorsal fin would typically be appears dark and is covered with small, rounded tubercles.
- A bulbous forehead characterizes the species, which lacks a distinct beak.
- The flippers are moderately long, broad, and terminate in pointed tips.
- Long, thin flukes with rounded tips feature a distinct median notch.

© Cipher01, some rights reserved (CC BY-SA 3.0)

Global distribution range of Indo-Pacific Finless Porpoise (*Neophocaena phocaenoides*). Source: IUCN Red List Assessment (2011).

General Ecology:


Indo-Pacific Finless Porpoises (*Neophocaena phocaenoides* G. Cuvier, 1829) areone of eight porpoise species inhabiting Asian coastal waters. They resemble miniature beluga whales and are distinguished by the complete absence of a dorsal fin, instead possessing a wide dorsal groove with small tubercles (Jefferson & Hung, 2004). Recent taxonomic revisions have split what was previously considered a single species into two: *N. phocaenoides* in the Indian Ocean and Southeast Asia and *N.*

asiaeorientalis in the eastern Pacific waters (Jefferson & Wang 2011), with the former being more tropical and wide-ranging of the two species. These shy and elusive cetaceans typically occur in small groups of 2-4 individuals, with recorded specimens measuring around 2-2.3 m and weighing around 60-70 kg. They avoid bow-wave riding and display boat-avoidance behaviour (Jefferson & Hung 2004). As opportunistic feeders, they hunt small fish, squid, and crustaceans in shallow coastal (Jefferson waters Wang 2011: Shirakihara et al., 1992). They produce both high-frequency clicks for echolocation longer, low-frequency tones communication, though they are generally less vocal than other cetaceans (Kasuya, 1999; Wang 1996).

Distribution:

Indo-Pacific finless porpoises shallow waters (usually <50 meters deep) along coastal regions, river mouths and estuaries around the northern rim of the Indian and western Pacific Oceans. Their range extends from the Persian/Arabian Gulf (Preen, 2004; Collins et al., 2005) eastwards around the Indian Ocean to the Indo-Malay region (Ponnampalam, 2012), and northwards through Java, Indonesia to the Taiwan Strait and central Chinese waters (Gao, 1991; Gao & Zhou, 1995). Regular sightings occur in East Malaysia (Minton et al., 2011) and year-round in Hong Kong (Jefferson et al., 2002). They inhabit shallow waters in India along both eastern and western coasts, with documented sightings, strandings and entanglements (Sule et al., 2017). Their presence has been recorded in Gujarat, Goa, Kerala, Karnataka, Tamil Nadu, Pondicherry, and Maharashtra (Jeyabaskaran et al., 2016; Jog et al., 2018;

Nammalwar *et al.*, 1994). Despite their common occurrence, published research on this species remains limited (Kumarran, 2012; Jog *et al.*, 2018).

Indo-Pacific Finless Porpoise (*Neophocaena phocaenoides*) along Tamil Nadu (black dots). Data source: Sighting and Strandings Database, Marine Mammals Research & Conservation Network of India (2025).

Global threats:

1. Entanglements and **Incidental** Bycatches – Like other phocoenids, finless porpoises, are highly vulnerable to gillnet entanglement (Jefferson & Curry, 1994), with significant mortality reported throughout their range (Jefferson et al., 2002). yeatch occurs in Iranian, Indian, Pakistani, Malaysian waters, but the magnitude remains poorly documented (Collins et al., 2005; Jaaman et al., 2009; Braulik et al., 2010). In Chinese waters, they are the most frequently captured cetaceans, with over 2,000 individuals

- taken in 1994 through trawl, gill, and stow nets (Yang *et al.*, 1999). Similarly, regular captures occur in Hong Kong waters through trawl and gillnets, though bycatch levels remain unquantified (Parsons & Jefferson, 2000; Jefferson *et al.*, 2002).
- 2. Environmental Disturbances The Indo-Pacific finless porpoise faces multiple threats beyond fishing-related mortality as a coastal species. Habitat degradation result from loss and extensive coastal modifications throughout Asia, including shrimp causeways, harbour farming, and development are a major issue (Reeves et al., 2003; Braulik et al., 2010). Additional threats including boat traffic collisions particularly and vessel problematic in Hong Kong waters (Parsons & Jefferson, 2000).
- **3. Direct Hunting** While no large-scale hunting targets this species, and direct remaining killing relatively (Reeves et al., 1997), there are concerns about emerging small-scale fisheries in Southeast Asia. These may have developed from incidental captures, driven by the economic benefits of consumption and marketing, traditional marine resources become depleted through overfishing (Perrin, 2002).

F) SIRENIANS

24. DUGONG

Taxonomy:

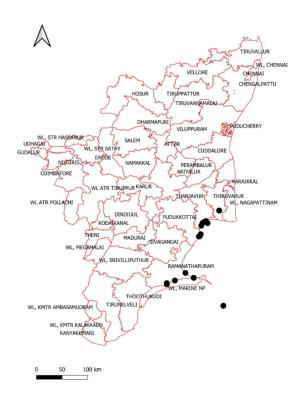
Domain : Eukaryota
Kingdom : Animalia
Phylum : Chordata
Class : Mammalia
Order : Sirenia

Family : Dugongidae
Genus : Dugong
Species : D. dugon
Müller 1776

Common Tamil Name: கடற்பசு

Key Identification Features:

- The body is large and cylindrical, tapering at both ends.
- Colouration varies, generally starting as a pale cream at birth and darkening to a brownish-to-dark-grey on the dorsal and lateral sides with age.
- The change in skin colour is due to the growth of algae on the skin.
- The body is sparsely covered with fine hair, mostly concentrated around the mouth.
- The snout is relatively large and rounded, ending in a muscular lip that hangs over the down-turned mouth.
- Tusks are present but are typically only visible through the skin in mature males.
- There is no dorsal fin, and the flippers are paddle-like.
- The tail flukes are flattened and have deep notches.


 \bigcirc wildlobster, some rights reserved (<u>CC BY-NC</u> 4.0)

Global distribution range of Dugong (*Dugong dugon*). Source: IUCN Red List Assessment (2019).

General Ecology:

Dugongs (Dugong dugon Müller 1776) are one of the four extant species within the order Sirenia, including three manatee species. It is the sole surviving member of the once-diverse family Dugongidae. They measure anywhere from 2 to 4 m in length and correspondingly weigh around 200 to 500 kg with some records of even 900 kg. Dugongs rely heavily on seagrass communities for their sustenance, which confines them to coastal habitats supporting seagrass meadows. The largest populations of dugongs are typically found expansive, shallow, and sheltered areas such as bays, mangrove channels, the waters surrounding large inshore islands, and inter-reefal waters (Husar, 1975; Bryden et al., 1998). They inhabit warm coastal waters stretching from the eastern coast of Africa to the western Pacific Ocean, between 26° and 27° north and south of the equator, with significant populations concentrated in wide and shallow bays. Dugongs are the only strictly marine herbivorous mammals that can also endure brackish waters (Naik et al., 2008) in coastal wetlands. Significant populations are also present in wide and shallow mangrove channels and around the large inshore islands, where seagrass beds are prevalent (Marsh et al., 2011).

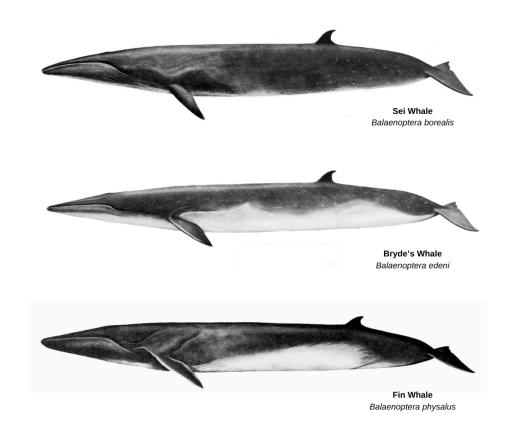
Dugong (*Dugong dugon*) along Tamil Nadu (black dots). Data source: Sighting and Strandings
Database, Marine Mammals Research &
Conservation Network of India (2025).

Distribution:

A highly isolated population is present in the Marine National Park, Gulf of Kutch (Wells et al., 1998), the only remaining population in western India. Former populations centred around the Maldives and the Lakshadweep are believed to be extinct (Husar, 1975). There exists a population in the Gulf of Mannar and the Palk Strait, inbetween India and the west coast of Sri Lanka (Frazier & Mundkur, 1990), as well as in the Andaman and Nicobar Islands (Das & Dey, 1999). Herds of hundreds of dugongs were once reported in the Palk Strait (Annandale, 1905). Although large during British rule, the Andaman & Nicobar is now considered small and scattered (Marsh et al., 2011). Recent recoveries of seagrass beds along former ranges of dugongs, such as Chilika Lake, have been confirmed, raising hopes for recolonisation of the species (Naik et al., 2008).

Global threats:

1. Direct Hunting - Artisanal coastal and riverine fisheries are crucial for coastal communities' livelihoods and food security, particularly in tropical regions (Batista et al., 2014), including most dugong habitats. Although dugongs are legally protected across much of their range, the enforcement of these protections often weak non-existent (Robards & Reeves, 2011). Artisanal fishers may be further compelled to break the law due to the lucrative opportunity to sell dugong meat and for other esoteric usages in medicine. folk amulets, charms, jewellery, carvings, religious artefacts, leather products and others (Marsh et al., 2011). In the Gulf of Mannar and Palk Bay, methods such as gill nets, shore seines, trawl nets, drift nets, ray nets, and even explosives have been employed to hunt dugongs (Bensam &

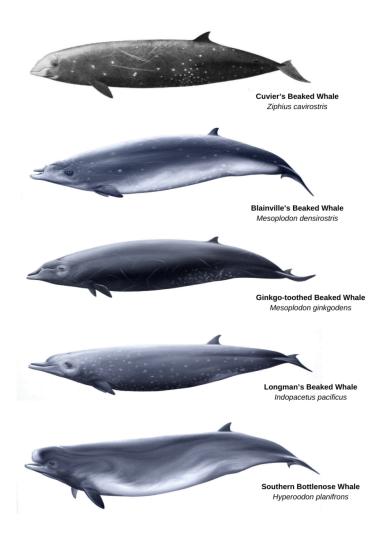

- Menon, 1996). Reports indicate that captures numbered 200 dugongs per year from 1983 to 1984, but this figure declined to 9 from 1986 to 1988 (Bensam & Menon, 1996).
- 2. Entanglement in Fishing Gears Gill nets pose a significant threat to many marine mammals, including dugongs (Read et al., 2006; Moore et al., 2010; Pilcher et al., 2017; Marsh et al., 2011). decline in some dugong populations has been linked to the introduction of monofilament nylon gill nets (Muir et al., 2012). In the Gulf of Mannar and Palk Bay waters, the extensive use of gill nets has been reported to cause annual dugong mortality, with an average of 40 dugong deaths yearly (Nair et al., 1975). reports indicate However, that awareness and protection efforts by the Government of India and the Tamil Forest Department Nadu have significantly reduced the incidental capture of dugongs (Ilangakoon et al., 2008).
- 3. Boat Strikes The mortality risk from boat strikes is increasingly recognised as a significant management issue for marine wildlife, including dugongs. Communities reliant on marine tourism and recreational fishing are major hotspots where dugong populations suffer injuries and fatalities due to boat strikes (Maitland et al., 2006). When fast-moving motorised boats travel through shallow feeding grounds, dugongs have less time to avoid collisions (Marsh et al., 2011, Hodgson, 2004).

4. Habitat Degradation - evelopment is another significant factor affecting dugongs. Severe wave action, shifting sediment, and reduced light cause extensive damage to seagrass beds (Thorogood, 1990). In response to the loss of feeding , dugongs travel extensively in search of seagrass, leading to increased capture in nets (Heinsohn & Spain, 1974). Additionally, these seagrass specialists delay breeding when faced with seagrass loss (Preen & Marsh, 1995). The impact of chemical and noise pollution dugongs remains on unquantified (Marsh et al., 2011).

IV. AMBIGUITIES ON THE DISTRIBUTION OF CERTAIN MARINE MAMMALS IN THE COASTAL AND MARINE AREAS OF TAMIL NADU

The consolidated list of marine mammals presented here is based on historical and recent scientific publications and reports. However, t

Historical records of Sei Whale (*Balaenoptera borealis*) and Fin Whale (*B. physalus*) strandings along the Tamil Nadu coast from the 1960s to 90s, particularly around the Gulf of Mannar and Palk Bay, have been documented (Sathasivam, 2000).



Morphological similarities between Bryde's, fin and sei whale

RareDegraded whale carcasses that wash ashore further complicate accurate identification. Brownell *et al.* (2017) reported that the individuals stranded in Sri Lanka and identified as fin whales prior to 2005, as noted by Ilangakoon (2002), were misidentified and were most likely blue whales, Bryde's whales, or possibly even Omura's whales (*B. omurai*). Subsequently, Ilangakoon (2012) did not list sei whales among the marine mammals in Sri Lanka, noting that some specimens previously identified as sei or fin whales were later confirmed to be Bryde's whales. Dudhat *et al.* (2022) studied marine mammal stranding hotspots along the Indian coastline and noted the lack of confirmed evidence and the retroactive misidentification of sei and fin whales. Anderson (2014) whilst the northern Indian Ocean may host sei whales and fin whales, these are likely being confused with Bryde's whales. They also commented on reports of Bryde's and sei whales in tuna fishing

areas, with conflicting accounts about which species were present, highlighting the need for expert identification and genetic testing.

The absence of recent sightings or strandings, particularly along Tamil Nadu raises further questions. The possibility of these whales having an extralimital distribution in the Bay of Bengal exists, so does the chance that these species once inhabited Indian waters but have since relocated for unknown reasons. Without further research, these ideas remain speculative. he IUCN Red List does not include in fsw (Cooke, 2018a, 2018b). Determining the distribution of marine mammals is inherently difficult without confirmed sightings or genetic evidence from strandings. Poor documentation and limited marine survey data also contribute to this lacuna. studies and proper documentation could distribution in the Indian Ocean.

Beaked Whales supposedly found in the northern Indian Ocean

Beaked whales are amongst the least-known groups of mammals due to their deep-sea habitat, reclusive behaviour and apparently low abundance (Bianuccia *et al.*, 2008). As of 2024, the Society for Marine Mammalogy Committee on Taxonomy recognises 24 extant species of beaked whales six genera. However, few species are reasonably well-known and studied. ive species of beaked whales – Blainville's beaked whale (*Mesoplodon densirostris*),

Cuvier's beaked whale (*Ziphius cavirostris*), ginkgo-toothed beaked whale (*M. ginkgodens*), Longman's beaked whale (*Indopacetus pacificus*), and southern bottlenose whale (*Hyperoodon planifrons*) – are known to inhabit Indian waters. However, only Cuvier's beaked whales have confirmed sightings and stranding the Tamil Nadu coasts as discussed previously.

Blainville's beaked whales have been recorded along the coastal areas of Karnataka ('Rare sighting of...', 2023) and the Nicobar Islands (Corbet & Hill, 1992), but there are no records of their presence along the Tamil Nadu coast. Ginkgo-toothed beaked whales have been recorded along Sri Lankan coasts (Leatherwood & Reeves, 1989) but confirmed strandingexist in Indian waters. Longman's beaked whales have no presence in India (Sathasivam, 2000) . . Southern bottlenose whales have no records from India, though the species is reported from Sri Lanka (Alling, 1986). ightings of bottlenose whales in tropical and subtropical waters were likely misidentifications of Longman's beaked whales rather than actual southern bottlenose whales.

four recognised humpback dolphin species, the Indo-Pacific (*Sousa chinensis*) and Indian Ocean (*S. plumbea*) humpback dolphins have considerable overlap in their distribution around the Indian coasts. The Indo-Pacific humpback dolphin predominantly occupies the northeastern Indian Ocean, while the Indian Ocean humpback dolphin is more common in the northwestern Indian Ocean (Liu *et al.*, 2021). This overlap around the Indian peninsula has led to confusion in accurately identifying these similar-looking species. Size and appearance are key differentiators. Both species are medium-sized delphinids, but on average, Indo-Pacific humpback dolphins are and weigh more than Indian Ocean humpback dolphins. In terms of colouration, the Indo-Pacific humpback dolphin is born dark grey and becomes mottled or entirely pink with age. In contrast, the Indian Ocean humpback dolphin remains light or dark grey throughout its life. Another distinguishing feature is the shape of the hump: Indo-Pacific humpback dolphins have a broad hump that gradually slopes into the body leaving only a slight hint of the hump. In contrast, Indian Ocean humpback dolphins have a more prominent and pronounced hump (Parra & Jefferson, 2018).

Indo-Pacific Humpback Dolphin Sousa chinensis

Indian Ocean Humpback Dolphin Sousa plumbea

Indo-Pacific and Indian Ocean humpback dolphin

Adding to the confusion, the Indian Ocean humpback dolphin was only recognised as a separate species in 2014 (Jefferson & Rosenbaum, 2014). Consequently, earlier publications reporting sightings or strandings of Indo-Pacific humpback dolphins in Indian waters may have inadvertently included misidentified Indian Ocean humpback dolphins. This document includes only the Indo-Pacific humpback dolphin as having a distribution in Tamil Nadu waters, as they are the predominant species in the northeastern Indian Ocean. The recently recognised Indian Ocean humpback dolphin requires further research and documentation to confirm its presence in Tamil Nadu waters.

V. MARINE CONSERVATION FRAMEWORKS: GLOBAL TO REGIONAL

international organisations have established frameworks for the conservation the through treaties and conventions. At its core lies the United Nations Convention on the Law of the Sea ()the Law of the Sea Convention, which came into force in 1994 with 169 signatories, including India. The international framework primarifocus on ocean governance. The Convention comprises 320 articles and nine annexes, covering critical aspects such as maritime boundary delimitation, environmental protection, marine scientific research, commercial exploitation of resources, technology transfer, and the resolution of disputes concerning ocean governance, particularly in areas beyond national jurisdiction. The recently adopted Agreement under the United Nations Convention on the Law of the Sea on the Conservation and Sustainable Use of Marine Biological Diversity of Areas Beyond National Jurisdiction (BBNJ Agreement), finalised in 2023, complements UNCLOS by addressing crucial issues such as ocean ecosystem degradation and biodiversity loss. The primary objective of this legally binding treaty is to ensure the conservation and sustainable use of marine biological diversity in areas beyond national jurisdiction, both for present and future generations, through the effective implementation of relevant UNCLOS provisions and enhanced international cooperation.

Established in 1992, the Convention on Biological Diversity (CBD) serves as a comprehensive international framework aimed at conserving biological diversity, promoting the sustainable use of its components, and ensuring the fair and equitable sharing of benefits arising from the utilization of genetic resources. To advance these goals, the CBD has been supplemented by agreements such as the Nagoya Protocol, which addresses access to genetic resources and benefit-sharing, and the Cartagena Protocol on Biosafety, focusing on the safe handling of living modified organisms. In 2022, the adoption of the Kunming-Montreal Global Biodiversity Framework set forth ambitious targets for 2030, including the protection of 30% of global terrestrial and marine areas. Furthermore, the Jakarta Mandate underscores the importance of conserving marine and coastal biodiversity, aligning with the CBD's overarching objectives. Several species-specific conventions further strengthen this protection, notably the Convention on International Trade in Endangered Species of Wild Fauna and Flora CITES (1973) for regulating marine species trade, the International Whaling Commission (1946) for whale conservation, and the Convention on Migratory Species of Wild Animals (1979) for protecting marine migrants. India is also a party to these conventions and has effectively implemented their objectives through various national legislations.

There are frameworks that address pollution prevention and environmental protection measures. The International Convention for the Prevention of Pollution from Ships (1973/1978) addresses ship-based pollution prevention, regulates harmful substances and designates protected areas. There are also region-specific legislatures such as the Marine Protection, Research and Sanctuaries Act (1972), authorised by the Environmental Protection Agency, that regulates ocean dumping of waste and provides for the designation and

regulation of marine sanctuaries within US waters, the Oslo-Paris (OSPAR) Convention (1998) for Northeast Atlantic protection, and the Barcelona Convention (1976) for Mediterranean Sea conservation. The Marine Mammal Protection Act (1972) was implemented particularly in response to anthropogenic threats faced by marine mammals and primarily governs all US territories and vessels.

India's marine conservation efforts are structured through a comprehensive legislative implementation framework, both at national and state levels. The Wild Life (Protection) Act 1972 serv as the cornerstone legislation for species protection on the national level, providing Schedule I and II protection for various s and establishing the legal framework for protected areas. The Biological Diversity Act was enacted in 2002 and amended in 2023 to promote the conservation of biological resources, the sustainable use of their components, and the fair and equitable sharing of benefits arising from their utilisation, including marine biological resources. It is implemented through the National Biodiversity Authority to help fulfil India's international conservation commitments. he Indian Forest Act (1927) consolidates laws relating to forests and forest produce. It applies to forest lands in coastal areas, especially mangrove forests, which are usually declared reserve forests.

India coastal management is primarily governed by the Coastal Regulation Zone Notification 2019 issued under the Environment (Protection) Act, 1986, which provides detailed guidelines for coastal development regulation and marine biodiversity protection. It also focuses on the conservation and management of Ecologically Sensitive Areas (ESAs), including mangroves, seagrasses, sand dunes, coral reefs, biologically active mudflats, turtle nesting grounds, and horseshoe crab habitats. The regulation prohibits developmental activities and waste disposal in these fragile coastal ecosystems. The Territorial Waters, Continental Shelf, Exclusive Economic Zone and other Maritime Zones Act 1976 empowers India to delineate its maritime zones and assert its sovereignty, safeguarding its interests while balancing national rights with international obligations. It also elucidates India's rights to explore, exploit, conserve, and manage natural resources within these zones, along with its jurisdiction over scientific research and marine environmental protection. The Coast Guard Act, 1978, ensures the security of India's maritime zones to safeguard marine and other national interests within these areas, as well as matters related thereto.

India has notified 130 Marine Protected Areas across its coastal states (24) and islands (106). Additionally, 106 sites have been identified and prioritised as Important Coastal and Marine Biodiversity Areas (ICMBAs) to safeguard marine species through targeted conservation efforts, focussing on marine biodiversity protection, habitat preservation and sustainable resource management. The Centre for Marine Living Resources and Ecology (CMLRE), an under the Ministry of Earth Sciences (MoES), is tasked with developing management strategies for marine living resources through ecosystem monitoring and modelling activities,. The centrally sponsored scheme Integrated Development of Wildlife Habitat (IDWH) aims to protect and manage wildlife habitats and threatened species such as marine turtles, dolphins, and dugongs, which are prioritised for assessment and population monitoring. Project Dolphin, initiated in 2021 by the Ministry of Environment, Forest and

Climate Change (MoEFCC) under the purview of the Wildlife Institute of India, seeks to protect riverine and oceanic dolphins.

ernmentTamil Nadu has developed particularly robust marine conservation measures. The Tamil Nadu Marine Fishing Regulation Act, 1983 (Act No. 8 of 1983) provides specific provisions for territorial waters management and definitions of fishing zones. The act also imposes seasonal fishing ban for stock enhancement during breeding seasons. The Tamil Nadu State Forest Policy adopted in 2018 further strengthens measures through coastal forest protection and mangrove conservation initiatives.

stablishment of the Gulf of Mannar Marine National ParkSouth Asia's first marine biosphere reserve r, Dugong Conservation Reserve in Palk Bay,covering the coastal waters of Thanjavur and Pudukottai districts, with an area of 448 square kilometres. This reserve also a testament to Tamil Nadu's commitment to conservation. It is India's first reserve dedicated to protecting dugongs and their habitats. The state government also launched India's first Marine Elite Force in Ramanathapuram in the same year to protect the marine resources and biodiversity in the Gulf of Mannar and Palk Bay. The following year, the state government implemented the Tamil Nadu Coastal Restoration Mission at a cost of ₹ 2000 crore over the next five years. The mission comprises projects to strengthen coastal biodiversity, improve coastal livelihood through sustainable tourism, and reduce plastic waste in marine environments.

These conservation measures are enacted by a well-structured institutional framework that includes the Tamil Nadu State Fisheries Department, Tamil Nadu Forest Department, National Coastal Zone Management Authority (NCZMA), and the Gulf of Mannar Biosphere Reserve Trust. This multi-tiered approach ensures comprehensive protection of marine ecosystems while balancing conservation needs with sustainable resource use.

regional1. Rapid Response & Rescue

To mitigate the rising trend of marine mammal strandings along the Tamil Nadu coastline, it is crucial to adopt a multifaceted approach. Strengthening community-based monitoring and enhancing postmortem investigations will provide valuable insights into the causes of strandings. Collaboration between researchers and local authorities is essential to develop effective conservation strategies. Focusing on high-risk areas like the Gulf of Mannar and Palk Bay, implementing sustainable fishing practices, and raising public awareness can significantly reduce human-induced threats. Additionally, long-term research on the impacts of climate change and proactive conservation measures are vital to safeguarding Tamil Nadu's vulnerable marine mammal populations. long-time management activity

VII. COMPREHENSIVE GUIDE TO MARINE MEGAFAUNA STRANDING RESPONSE

Stranding refers to the occurrence of marine life, such as cetaceans, sea turtles, and pinnipeds, being found in situations where they are return to their natural habitat without assistance. Cetaceans are considered stranded when they are dead on the beach or floating in the water, or alive on the beach but unable to return to the sea. Live-stranded animals typically require medical attention or professional help to facilitate their return to the ocean. Marine animals are strand for numerous reasons, with the predominant causes varying by species. Common causes include, but are not limited to, ship or vessel collisions, entrapment or entanglement in fishing gear, infections and diseases, parasitism, starvation, noise pollution, and unusual weather events (Understanding Marine Wildlife Stranding and Response: NOAA)

Marine megafauna, including whales, dolphins, porpoises, and dugongs, frequently strand along coastlines due to natural and human-induced factors. Effective response requires coordinated efforts involving government agencies, marine biologists, veterinarians, NGOs, and local communities. The following cumulative guidelines have been sourced from the manuals to create a standardized response framework for handling marine mammal stranding incidents.

A) Causes of Marine Mammal Strandings

Natural Causes:

- Disease and parasitic infections
- Old age and natural mortality
- Predation and physical injuries
- Extreme weather conditions (storms, earthquakes, tidal shifts)

Human-Induced Causes:

- Fishing Gear Entanglement
- Boat Strikes
- Pollution
- Noise Disturbance
- Habitat Destruction

B) Stranding Types & Identification

• Single Stranding - Usually involves sick, injured, or disoriented individuals, more common in coastal species.

- Mass Stranding Involves multiple individuals of the same species, typically social marine mammals like pilot whales, may be triggered by environmental factors or social cohesion.
- Beaching Dead strandings, carcasses washed ashore due to natural death at sea or post-mortem drift.

C) Immediate Response Protocol

Step 1: Report & Secure the Area

- Notify authorities by contacting marine rescue organizations, fisheries departments, and local law enforcement.
- Keep crowds away to reduce stress and prevent interference.
- Assess safety risks, including sharp objects, waves, and dangerous marine predators.

Step 2: Assess the Animal's Condition

- Determine if the animal is alive or dead by checking breathing and responsiveness.
- Observe vital signs such as blowhole movement, body temperature, and skin condition.
- Look for signs of injury, including cuts, bleeding, or entanglement marks.
- Identify the species, which is essential for proper handling and conservation reporting.

Step 3: Provide Emergency First Aid

For Live Strandings:

- Ensure the blowhole is clear and unobstructed by sand or water.
- Provide hydration and cooling by covering the body with wet towels, but do not cover the blowhole.
- Position the animal upright or on the belly and avoid rolling it unnecessarily.
- Minimize noise and stress by avoiding sudden movements and loud sounds.

For Dead Strandings:

- Document the carcass by taking photographs and noting injuries and the decomposition state.
- If trained, collect samples of tissue, stomach contents, and blubber for necropsy.
- Prepare for disposal through burial, incineration, or leaving it for natural decomposition.

D) Handling & Transport

Small to Medium-Sized Marine Mammals:

- Use stretchers, tarpaulins, or inflatable rafts.
- Avoid dragging animals over rough terrain.
- Ensure flippers and blowhole remain free from obstruction.

Large Whales & Dugongs:

- Heavy machinery (cranes, front-end loaders) is required.
- Helicopter transport may be necessary for certain cases.
- Keep the animal moist throughout transportation.

Rehabilitation & Relocation:

- Assess suitability for release, ensuring only healthy animals are returned to the ocean.
- Gradually acclimatize the animal by supporting it in shallow water before full release.
- Monitor for re-stranding using satellite tags or visual observation.

E) Necropsy & Data Collection

Necropsy Objectives:

- Determine cause of death.
- Identify diseases, parasites, or human-related injuries.
- Collect biological samples for research.

Standard Sample Collection:

- Tissue & Blubber: For toxicology and genetic analysis.
- Stomach Contents: Check for plastic ingestion or poisoning.
- Skin & Organs: Histopathology for disease identification.

F) Carcass Disposal Methods

- 1. **Burying** Preferred method; dig deep trenches to prevent health hazards.
- 2. **Burning** Used only if necessary for disease control.
- 3. **Leaving in Place** Allowed in remote, uninhabited areas.

G) Stranding Prevention & Conservation

Public Awareness & Training:

- Conduct workshops for fishermen, coastal communities, and first responders.
- Promote responsible fishing practices to reduce entanglements.

Use of Technology:

- Drones & Satellite Tracking Monitor marine mammal movements.
- Mobile Ap & Hotlines Report strandings in real-time.

Legislation & Policy Advocacy:

- existing laws protecting marine mammals.
- Collaborate with defence and maritime agencies for large-scale response efforts.

Th highlights the necessity of a multidisciplinary approach stranding responses, rescue, rehabilitation, research, and policy implementation for. By integrating standard and best practices from various sources, it ensures effective intervention, improved data collection, and the long-term conservation of marine megafauna. Additionally, manuals provide procedures for respon to stranding events.

1. Title: A Manual on Marine Mammal Stranding Response (2022)

Authors: Sivakumar, K., Rajpurkar, S., Tripura, V., Dixit, D., Pande, A., Prabakaran, N., & Johnson, J.A.

Published by: Wildlife Institute of India

Available at: https://wii.gov.in/marine manual 2022

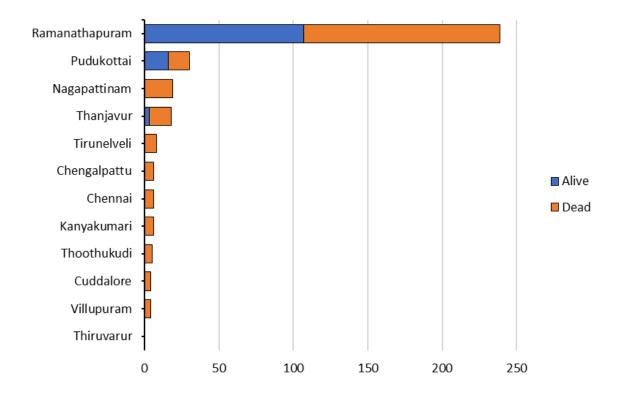
2. Title: Marine Mega Fauna Stranding Management Guidelines (2021)

Published by: Ministry of Environment, Forest and Climate Change, Government of India Available at: https://moef.gov.in/uploads/2018/03/MARINE-MEGA-.pdf

3. Title: Training Manual - GOI-UNDP-GEF Sponsored Training Programme - Dealing with Marine mammals stranding in India (2014)

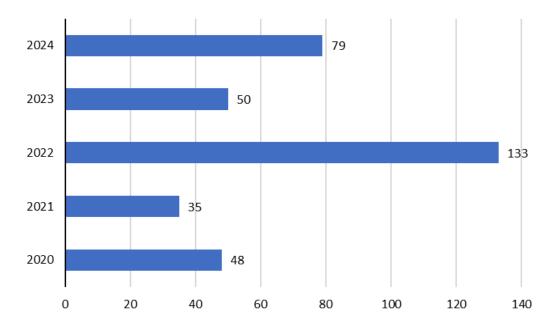
Compiled and edited by: Ramkumar, S., Sakthivel, M., Mhatre, V. D., & Gopakumar, G.

Published by: Central Marine Fisheries Research Institute

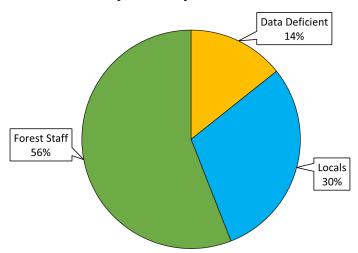

Available at: https://eprints.cmfri.org.in/10469/

VIII. OVERVIEW OF MARINE MAMMAL STRANDINGS AND SIGHTINGS IN TAMIL NADU (2020-2024)

While historic records of marine mammal sightings and strandings exist along the coastal and marine regions of Tamil Nadu, recent observations are somewhat limited and necessitate more systematic documentation. S,ing ighting and stranding data were acquired for the period from 2020 to 2024. Details regarding the date, location, latitude and longitude, species, number, and status of the animal (dead or alive), cause of death if determined, first observer, and subsequent actions taken for both live sightings and dead strandings were collected. Irrelevant observations such as turtles and sharks were removed from the dataset for further analysis. theincomplete, categorised into generalised groups such as 'whales' and 'dolphins', rather than specifying the exact species. Therefore, similar generalised categories – whales, dolphins, porpoises, dugongs – were used unless specified otherwise.


Data Collected from Coastal Divisions:

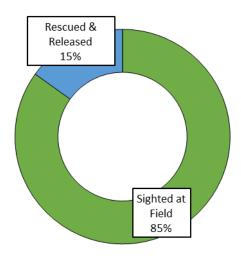
Data were from twelve coastal divisions of Tamil Nadu: Chengalpattu, Chennai, Cuddalore, Kanyakumari, Nagapattinam, Pudukottai, Ramanathapuram, Thanjavur, Thiruvarur, Thiruvarur, Tuticorin, and Villupuram. The highest number of observations, both dead and alive, was documented in Ramanathapuram, followed by Pudukottai and Nagapattinam.


Graphical representation of all observations (live sightings and dead strandings) across Tamil Nadu's coastal divisions from 2020 to 2024 (n=345).

both, followed by Least number of.

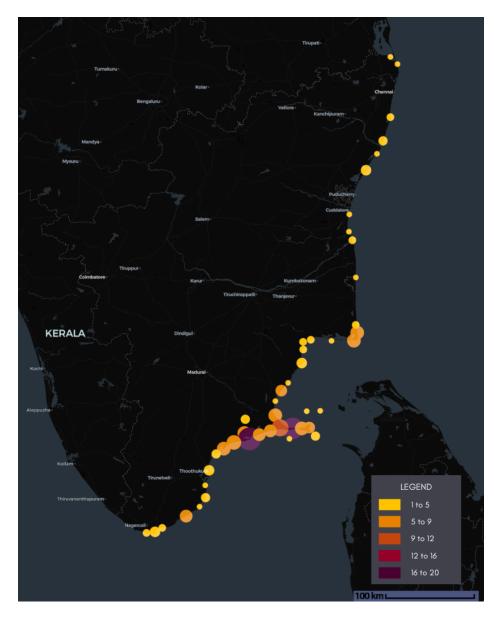
Graphical representation of all observations (live sightings and dead strandings) across 2020 to 2024 (n=345).


staff latter presumably includes a mixture of residents, fishermen, and visitors.


Graphical representation of first observer of marine mammals across Tamil Nadu's coastal divisions from 2020 to 2024 (n=252).

Live Sightings of Marine Mammals:

were documented only three divisions - Ramanathapuram, Pudukottai, and Thanjavur.

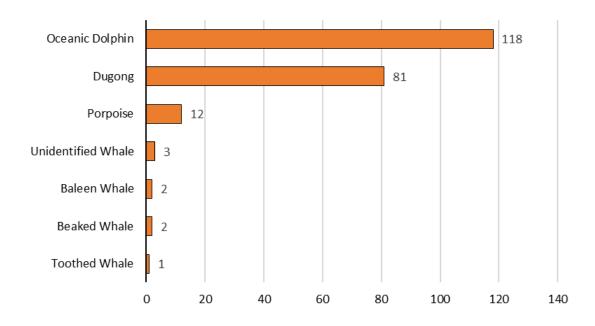

Graphical representation of live sightings of different marine mammal groups across Tamil Nadu's coastal divisions from 2020 to 2024 (n=126).

Graphical representation of course of action on sighting live marine mammals across Tamil Nadu's coastal divisions from 2020 to 2024 (n=126).

Dead Strandings of Marine Mammals:

intensityClusters were aggregated based on the number of animals stranded within an approximate radius of 1 to 30 km. The map a series of circles along the coastline, each representing the number of stranded marine mammals. increasesize and colour intensity of circle number of stranding, as indicated by the legend.

Bubble cluster heatmap of dead strandings frequency of marine mammals across Tamil Nadu's coastal divisions from 2020 to 2024 (n=219).

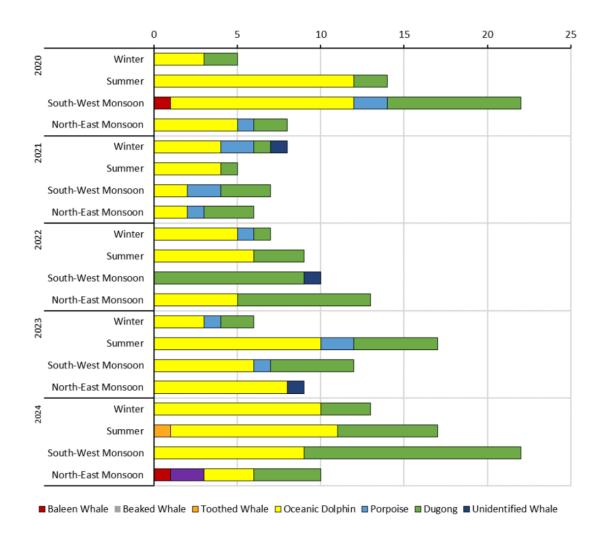

620,he southern coastline, particularly near the Gulf of Mannar and Palk Bay. The southern especially near Rameswaram and Tuticorin, exhibit moderate density clusters (12 to 16)the circles become smaller and lighter, reflecting fewer stranding (1 to 5). This pattern suggests that the factors causing strandings may be more prevalent or severe in the southand southeastern coastcompared to the northern coast.

The Gulf of Mannar and Palk Bay areas are renowned for their high biodiversity. attract a wide variety of aquatic fauna, including marine mammals (Retnamma *et al.*, 2021). However, this also thatheighten the risk of stranding, stemming from anthropogenic factors.

Dudhat *et al.* (2022) conducted a spatio-temporal analysis to identify marine mammal stranding hotspots along the Indian coastline, highlighting al areas such as Rameshwaram, Thoothukudi, and Chennai. that a combination of anthropogenic factors, fishing gear

entanglement, vessel strikes, and noise pollution, these areas becoming stranding hotspots. evidenced the cluster map, which intens fishing and shipping activities prevalent.

Dead strandings dominate the dataset. Oceanic Dolphins (53.9%) Dugongs (37.0%), Porpoises (5.5%), unidentified Whales (1.4%), Baleen Whales (0.9%), Beaked Whales (0.9%), and Toothed Whales (0.4%).



Graphical representation of dead strandings of different marine mammal groups across Tamil Nadu's coastal divisions from 2020 to 2024 (n=219).

ottlenose, humpback, rough-toothed, and spinner dolphins, as well as pygmy killer and pilot whales, are grouped under "Oceanic Dolphin". Blue and Bryde's whales were grouped under "Baleen Whale". The "Toothed Whale" category had only one observation. "Porpoise" generally refers to Indo-Pacific finless porpoises. The specific species of beaked whale was not identified in the data received, but genetic studies later confirmed it as Cuvier's beaked whale, as verified by AIWC researchers who assisted with the post-mortem examinations.

Seasonal Variation in Dead Strandings:

to understand the impact stranding. our seasons were categorised based on Tamil Nadu's climat: Winter (January to February), summer (March to May), south-west monsoon (June to September), and north-east monsoon (October to December).

Graphical representation of dead strandings of different marine mammal groups over different seasons across Tamil Nadu's coastal divisions from 2020 to 2024 (n=219).

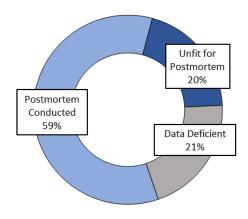
The graph illustrates the variation in marine mammal strandings across different seasons and years, with distinct peaks and troughs. The most significant peak occurs during the south-west monsoon 2020. 2022, there is a noticeable increase in strandings, particularly during the south-west and north-east monsoon seasons. Winters and summers generally have fewer strandings compared to the monsoon seasons.

Oceanic dolphins consistently have the highest number of strandings across most seasons, especially during the south-west monsoon. Porpoises show significant numbers, particularly in 2020 and 2023, while dugongs have a moderate presence, with peaks in 2020 and 2023. Beaked whales and toothed whales are rarely observed, with notable occurrences during the north-east monsoon in 2024. Baleen whaleappear only once in 2020.

The high number of strandings during monsoon seasons could be ,ing. Biju Kumar *et al.* (2021) that most strandings ofwere documented during the monsoon and post-monsoon seasons, likely linked sea conditions. Similarly, Kanji *et al.* (2019) identified extreme weather and tidal fluxes as contributing factors whale strandings. of feeding grounds may also drive

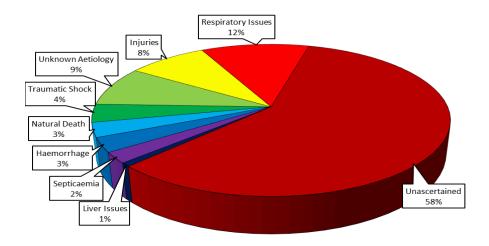
these mammals closer to shorethe risk of stranding. Balaji & Sekar (2021) examined strandings along northern Palk Baythat most documented dugong strandings occurred during the summer, probably due to increased seagrass growth.

Oceanic dolphins and dugongs were the most frequently stranded, both natural and anthropogenic. This pattern is observed in many marine mammal studies (Thomas *et al.*, 2022; Biju Kumar *et al.*, 2021; Jeyabaskaran & Vivekanandan, 2013; Kiszka, 2009). Anthropogenic such as fishing and bycatch, likely contribute to this risk as well. These threats persist year-round, particularly affecting coastal species like dolphins and dugongs (Thomas *et al.*, 2022; Kiszka *et al.*, 2009; Hatkar *et al.*, 2023). Species coastal feeding habits are vulnerable due to constant fishing activit (Jeyabaskaran & Vivekanandan, 2013).


Porpoises also e a significant number of strandings, following dolphins and dugongs (Balaji & Sekar, 2021; Jeyabaskaran & Vivekanandan, 2013). They are particularly prone to entanglements and bycatches (Thomas *et al.*, 2022; George *et al.*, 2011). A study on the seasonality of harbour porpoise strandings in the Sea of Azov documented most strandings in the summer, coinciding with the calving season and associated nutritional stress (Vishnyakova & Gol'din, 2014). Similar trends were observed in the Pacific Northwest (Warlick *et al.*, 2022).

or causes, such as ship strikes. Ship strikes pose a significant threat to larger cetaceans, particularly during their migratory patterns and in calving grounds (Plön *et al.*, 2023). Factors such as climate change (MacLeod *et al.*, 2005), which alters marine mammal behaviour (Prado *et al.*, 2016) and migration patterns (Plön *et al.*, 2023), are also known to contribute to stranding trends.

Improved reporting and monitoring efforts may have contributed to the apparent increase in strandings from 2022 onwards. The graph highlights clear seasonal patterns and species-specific trends, underscoring the significant influence of seasons on stranding events. The dominance of oceanic dolphins and dugongs in stranding data reflects their susceptibility to human activities and environmental .


Postmortem Examination and Causes of Death:

Regarding the course of action , presumablysuch. 20% were declared unfit for postmortem examination due to the carcass being highly decomposed or destroyed. 59% of the dead strandings post-mortem examination.

Graphical representation of course of action on sighting dead marine mammal strandings across Tamil Nadu's coastal divisions from 2020 to 2024 (n=219).

these postmortem examinations, the cause of death was unascertainable in 58% of the individuals, primarily due to decomposition of the carcass. remain the leading wereinteractionseries. Traumatic shock, septicaemia, and liver issues (such as hepatic insufficiency) were also documented causes of death, with natural death.

Graphical representation of different causes of death determined from postmortem examination of dead marine mammal strandings across Tamil Nadu's coastal divisions from 2020 to 2024 (n=130).

VIII. DATA COLLECTION SOURCES

Various sources were to and compile data on the marine mammals of Tamil Nadu. majority of the historical records of marine mammals in India, while Kamalakannan & Nameer (2020) and Menon (2023) provided update on the mammals of India. articlesreports articles were also reviewed to better insights into the marine mammals.

.

Complementarily, region-specific stranding and sighting information, which was used for map. -pen-access data and information sites such as the World Register of Marine Species (WoRMS) and Ocean Biodiversity Information System (OBIS) were to confirm the presence of certain species coast he Society for Marine Mammalogy was relied upon for matters taxonomic status. The conservation status of the species was based on the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) and the IUCN Red List. s

nline resources – such as the International Whaling Commission's (IWC) Whale Watching Handbook, National Oceanic and Atmospheric Administration (NOAA) Fisheries, Ocean Research & Conservation Association (ORCA) Ireland, and Whale and Dolphin Conservation (WDC). mages of marine mammals from Wikimedia Commons and iNaturalist with proper .

Sighting and stranding data from 2020 to 2024 were from the twelve coastal forest divisions of Tamil Nadu .

The Kepler gl online geospatial tool was used to the distribution of stranding from the coastal divisions of Tamil Nadu. Microsoft Excel was used to graphical illustrations.

IX. REFERENCES

Introduction

- Albouy, C., Delattre, V. L., Mérigot, B., Meynard, C. N., & Leprieur, F. (2017). Multifaceted biodiversity hotspots of marine mammals for conservation priorities. *Diversity and Distributions*, 23(6), 615-626.
- Avila, I. C., Correa, L. M., & Parsons, E. C. M. (2015). Whale-watching activity in Bahía Málaga, on the Pacific coast of Colombia, and its effect on humpback whale (*Megaptera novaeangliae*) behavior. *Tourism in Marine Environments*, 11(1), 19-32.
- Avila, I. C., Kaschner, K., & Dormann, C. F. (2018). Current global risks to marine mammals: taking stock of the threats. *Biological Conservation*, 221, 44-58.
- Balaji, V., & Sekar, V. (2021). Marine mammal strandings in the northern Palk Bay from 2009 to 2020. *Journal of Threatened Taxa*, 13(5), 18313-18318.
- Barnes, L. G. (1985). Evolution, taxonomy and antitropical distributions of the porpoises (*Phocoenidae*, *Mammalia*). *Marine Mammal Science*, *I*(2), 149-165.
- Baulch, S., & Perry, C. (2014). Evaluating the impacts of marine debris on cetaceans. *Marine pollution bulletin*, 80(1-2), 210-221.
- Bossart, G. D. (2011). Marine mammals as sentinel species for oceans and human health. *Veterinary pathology*, 48(3), 676-690.
- Bowen, W. D. (1997). Role of marine mammals in aquatic ecosystems. *Marine Ecology Progress Series*, 158, 267-274.
- Boyd, I., Hanson, N., & Tynan, C. T. (2019). Effects of climate change on marine mammals. In *Encyclopedia of Ocean Sciences* (pp. 416-419). Elsevier Inc.
- Clapham, P. J., & Baker, C. S. (2018). Whaling, modern. In *Encyclopedia of marine mammals* (pp. 1070-1074). Academic Press.
- Climate Change Information Portal (CCIP), Anna University. *Tamil Nadu Coastal Ecosystem*. https://www.annauniv.edu/cccdm/ccis/coastal.html. Accessed on 29 January 2025.
- Committee on Taxonomy. (2021). List of marine mammal species and subspecies. *Society for Marine Mammalogy*. https://www.marinemammalscience.org/species-information/list-marine-mammal-species-subspecies/. Accessed date: 10 January 2025
- Desforges, J. P. W., Sonne, C., Levin, M., Siebert, U., De Guise, S., & Dietz, R. (2016). Immunotoxic effects of environmental pollutants in marine mammals. *Environment international*, 86, 126-139.
- Domning, D. P. (2001). The earliest known fully quadrupedal sirenian. *Nature*, 413(6856), 625-627.
- Gales, N., Hindell, M., & Kirkwood, R. (Eds.). (2003). *Marine mammals: fisheries, tourism and management issues*. Csiro Publishing.
- Gatesy, J., Geisler, J. H., Chang, J., Buell, C., Berta, A., Meredith, R. W., Springer, M. S., & McGowen, M. R. (2013). A phylogenetic blueprint for a modern whale. *Molecular phylogenetics and evolution*, 66(2), 479-506.
- Helm, R. C., Costa, D. P., DeBruyn, T. D., O'Shea, T. J., Wells, R. S., & Williams, T. M. (2014). Overview of effects of oil spills on marine mammals. *Handbook of oil spill science and technology*, 455-475.
- Hoyt, E. (2009). Whale watching. In Encyclopedia of marine mammals (pp. 1223-1227). Academic Press.
- Hoyt, E. (2012). Marine protected areas for whales dolphins and porpoises: A world handbook for cetacean habitat conservation. Routledge.

- International Union for Conservation of Nature and Natural Resources IUCN, 2024. The IUCN Red List of Threatened Species. Version 2024-2. https://www.iucnredlist.org. Accessed on 10 January 2025.
- Kannan, P., & Rajagopalan, M. (2013). Sightings of marine mammals in Bay of Bengal, Andaman and Nicobar Islands waters. *Ecology and Conservation of Tropical Marine Faunal Communities*, 323-330.
- Kaschner, K., Tittensor, D. P., Ready, J., Gerrodette, T., & Worm, B. (2011). Current and future patterns of global marine mammal biodiversity. *PLoS one*, 6(5), e19653.
- Katona, S., & Whitehead, H. (1988). Are cetacea ecologically important. *Oceanogr Mar Biol Annu Rev*, 26, 553-568.
- Kiszka, J. J., Heithaus, M. R., & Wirsing, A. J. (2015). Behavioural drivers of the ecological roles and importance of marine mammals. *Marine Ecology Progress Series*, 523, 267-281.
- Kumaran, P. L. (2002). Marine mammal research in India–a review and critique of the methods. *Current Science*, 1210-1220.
- Lambert, O., de Muizon, C., Malinverno, E., Celma, C. D., Urbina, M., & Bianucci, G. (2018). A new odontocete (toothed cetacean) from the Early Miocene of Peru expands the morphological disparity of extinct heterodont dolphins. *Journal of Systematic Palaeontology*, 16(12), 981-1016.
- Leatherwood, S., & Donovan, G. P. (Eds (1991). *Cetaceans and cetacean research in the Indian Ocean Sanctuary*. Marine Mammal Technical Report No. 3. UNEP, Nairobi, Kenya. pp 180-210.
- Leatherwood, S., & Reeves, R. R. (1989). Marine mammal research and conservation in Sri Lanka, 1985-1986 (No. 1).
- McGowen, M. R., Tsagkogeorga, G., Álvarez-Carretero, S., Dos Reis, M., Struebig, M., Deaville, R., Jepson, P. D., Jarman, S., Polanowski, A., Morin, P. A., Rossiter, S. J., & Rossiter, S. J. (2020). Phylogenomic resolution of the cetacean tree of life using target sequence capture. *Systematic biology*, 69(3), 479-501.
- Moore, S. E. (2008). Marine mammals as ecosystem sentinels. Journal of Mammalogy, 89(3), 534-540.
- Mowat, R. J. (2006). The Exploitation and Cultural Importance of Sea Mammals, Edited by Gregory G. Monks.
- Nambi, A., & Bahinipati, C. S. (2012). Adaptation to climate change and livelihoods: An integrated case study to assess the vulnerability and adaptation options of the fishing and farming communities of selected east coast stretch of Tamil Nadu, India. *Asian Journal of Environment and Disaster Management*, 4(3), 297-321.
- Nammalwar, P., Lipton, A. P., Pillai, S. K., Maheswarudu, G., Kasinathan, C., Bose, M., Ramamoorthy, N., & Thillairajan, P. (1994). Instances of finless black porpoise, *Neophocaena phocaenoides* caught in Mandapam region along the Palk Bay coast in Tamil Nadu. *Marine Fisheries Information Service, Technical and Extension Series*, 127, 16-17.
- National Oceanic and Atmospheric Administration (NOAA). (2018). Marine Mammals. Retrieved from https://www.noaa.gov/education/resource-collections/marine-life/marine-mammals
- Nelms, S. E., Alfaro-Shigueto, J., Arnould, J. P., Avila, I. C., Nash, S. B., Campbell, E., Carter, M. I. D., Collins, T., Currey, R. J. C., Domit, C., Franco-Trecu, V., Fuentes, M. M. P. B., Gilman, E., Harcourt, R. G., Hines, E. M., Hoelzel, A. R., Hooker, S. K., Johnston, D. W., Kelkar, N., Kiszka, J. J., Laidre, K. L., Mangel, J. C., Marsh, H., Maxwell, S. M., Onoufriou, A. B., Palacios, D. M., Pierce, G. J., Ponnampalam, L. S., Porter, L. J., Russell, D. J. F., Stockin, K. A., Sutaria, D., Wambiji, N., Weir, C. R., Wilson, B., & Godley, B. J. (2021). Marine mammal conservation: over the horizon. *Endangered Species Research*, 44, 291-325.
- O'Connor, S., Campbell, R., Cortez, H., & Knowles, T. (2009). Whale Watching Worldwide: tourism numbers, expenditures and expanding economic benefits, a special report from the International Fund for Animal Welfare. *Yarmouth MA, USA, prepared by Economists at Large*, 228.
- Parsons, E.C.M., & McCafferty, Dominic & Simmonds, Mark & Wright, Andrew. (2012). Introduction to Marine Mammal Biology and Conservation.

- Rajan, S. M. P., Nellayaputhenpeedika, M., Tiwari, S. P., & Vengadasalam, R. (2020). Mapping and analysis of the physical vulnerability of coastal Tamil Nadu. *Human and Ecological Risk Assessment: An International Journal*.
- Ramachandran, A., (2001). Rescue of a stranded whale in the Palk Strait, Tamil Nadu. *The Indian Forester,* 127(10), 1178-1184.
- Read, A. J., Drinker, P., & Northridge, S. (2006). Bycatch of marine mammals in US and global fisheries. *Conservation biology*, 20(1), 163-169.
- Roman, J., Estes, J. A., Morissette, L., Smith, C., Costa, D., McCarthy, J., Nation, J.B., Nicol, S., Pershing, A., & Smetacek, V. (2014). Whales as marine ecosystem engineers. *Frontiers in Ecology and the Environment*, 12(7), 377-385.
- Sadhukhan, K., Ramesh, C. H., Shanmugaraj, T., Murthy, M. V., & Satish, S. (2022). Report on Death of Dwarf Sperm Whale, *Kogia sima* (Order: *Cetacea*; Family: *Kogiidae*) in Vedalai Shore of Mandapam, Gulf of Mannar. *Annual Research & Review in Biology*, *37*(1), 37-42.
- Sergio, F., Caro, T., Brown, D., Clucas, B., Hunter, J., Ketchum, J., McHugh, K., & Hiraldo, F. (2008). Top predators as conservation tools: ecological rationale, assumptions, and efficacy. *Annual review of ecology, evolution, and systematics*, 39(1), 1-19.
- Sudhan, C., Jawahar, P., Moulitharan, N., & Santhosh Kumar, S. (2017). Short communication on stranded Bryde's whale along Thoothukudi Coast of Tamil Nadu, India. *J Ent Zoo Stud*, *5*(2), 507-512.
- Theenadhayalan, G., Kanmani, T., & Baskaran, R. (2012). Geomorphology of the Tamil Nadu coastal zone in India: applications of geospatial technology. *Journal of Coastal Research*, 28(1), 149-160.
- Thewissen, J. G. M., Cooper, L. N., George, J. C., & Bajpai, S. (2009). From land to water: the origin of whales, dolphins, and porpoises. *Evolution: Education and Outreach*, *2*, 272-288.
- Thomas, S. N., Sandhya, K. M., & Edwin, L. (2022). Incidental Catch of Marine Mammals and Turtles in Gillnets: Indian Scenario. *Fishery Technology*, *59*, 1-18.
- Van Bressem, M. F., Simões-Lopes, P. C., Félix, F., Kiszka, J. J., Daura-Jorge, F. G., Avila, I. C., Secchi, E. R., Flach, L., Fruet, P. F., du Toit, T., Ott, P. H., Elwen, S., Di Giacomo, A. B., Wagner, J., Banks, A., & Van Waerebeek, K. (2015). Epidemiology of lobomycosis-like disease in bottlenose dolphins *Tursiops* spp. from South America and southern Africa. *Diseases of Aquatic Organisms*, 117(1), 59-75.
- Van Waerebeek, K., Baker, A. N., Félix, F., Gedamke, J., Iñiguez, M., Sanino, G. P., Secchi, E., Sutaria, D., van Helden, A., & Wang, Y. (2007). Vessel collisions with small cetaceans worldwide and with large whales in the Southern Hemisphere, an initial assessment. *Latin American Journal of Aquatic Mammals*, 43-69.
- Watson, J., & Estes, J. A. (2011). Stability, resilience, and phase shifts in rocky subtidal communities along the west coast of Vancouver Island, Canada. *Ecological Monographs*, 81(2), 215-239.
- Weilgart, L. S. (2007). The impacts of anthropogenic ocean noise on cetaceans and implications for management. *Canadian journal of zoology*, 85(11), 1091-1116.

Common Minke Whale

- Balaenoptera acutorostrata: Marine Mammal Research and Conservation Network of India (MMRCNI). https://www.marinemammals.in/mmi/identification-guide/character-matrix-7/minke-whale/. Accessed on 04 March 2025.
- Brownell, R. L. Jr., de Vos, A., & Ilangakoon, A. D. (2017). Large Whale Strandings from Sri Lanka between 1889 and 2014. International Whaling Commission Scientific Committee Document SC/67A/HIM/11.
- Cooke, J.G. 2018. *Balaenoptera acutorostrata*. The IUCN Red List of Threatened Species 2018. Accessed on 03 March 2025.
- Ford, J. K., & Reeves, R. R. (2008). Fight or flight: antipredator strategies of baleen whales. *Mammal Review*, 38(1), 50-86.

- Ford, J. K., Ellis, G. M., Matkin, D. R., Balcomb, K. C., Briggs, D., & Morton, A. B. (2005). Killer whale attacks on minke whales: prey capture and antipredator tactics. *Marine mammal science*, 21(4), 603-618.
- Hayes, S. A., Josephson, E., Maze-Foley, K., & Rosel, P. E., (2019). US Atlantic and Gulf of Mexico Marine Mammal Stock Assessments 2018. NOAA Technical Memorandum.
- Heyning, J. E., & Lewis, T. D. (1990). Entanglements of baleen whales in fishing gear off southern California. *Reports of the International Whaling Commission*. 40: 427–431
- International Whaling Commission. 2018a. Report of the Sub-Committee on the Revised Management Procedure. *Journal of Cetacean Research and Management* 19(Suppl.): 115-153.
- International Whaling Commission. 2018b. Catch Limits and Catches taken. Available at: iwc.int\catches. (Accessed: 25.01.2025)
- Kasinathan, C. (2002). On a minke whale *Balaenoptera acutorostrata* caught at Pudupattinam near Thondi along Palk Bay. Marine Fisheries Information Service, Technical and Extension Series, 173, 8.
- Laist, D. W., Knowlton, A. R., Mead, J. G., Collet, A. S., & Podesta, M. (2001). Collisions between ships and whales. *Marine Mammal Science*, 17(1), 35-75.
- Mangott, A. H., Birtles, R. A., & Marsh, H. (2011). Attraction of dwarf minke whales *Balaenoptera acutorostrata* to vessels and swimmers in the Great Barrier Reef World Heritage Area—the management challenges of an inquisitive whale. *Journal of Ecotourism*, 10(1), 64-76.
- Martin, S. W., Marques, T. A., Thomas, L., Morrissey, R. P., Jarvis, S., DiMarzio, N., Moretti, D., & Mellinger, D. K. (2013). Estimating minke whale (*Balaenoptera acutorostrata*) boing sound density using passive acoustic sensors. *Marine Mammal Science*, 29(1), 142-158.
- Minke Whale. IWC. https://iwc.int/about-whales/whale-species/minke-whale. Accessed on 03 March 2025.
- Minke Whale. NOAA Fisheries. https://www.fisheries.noaa.gov/species/minke-whale. Accessed on 03 March 2025.
- Minke Whale. ORCA Ireland. https://www.orcaireland.org/minke-whale. Accessed on 03 March 2025.
- Northridge, S., Cargill, A., Coram, A., Mandleberg, L., Calderan, S., & Reid, R. (2010). Entanglement of minke whales in Scottish waters: an investigation into occurrence, causes and mitigation. *Contract Report. Final Report to Scottish Government CR/2007/49*, *57*.
- Ole Øen, E. (2021). Animal welfare in the conduct of whaling: A review of the research and developments to improve animal welfare in the minke whale hunt in Norway 1981–2005. *Senri Ethnological Studies*, 104, 287-318.
- Perkins, J. S., & Beamish, P. C. (1979). Net entanglements of baleen whales in the inshore fishery of Newfoundland. *Journal of the Fisheries Board of Canada*, 36(5), 521-528.
- Perrin, W. F., Mallette, S. D., & Brownell Jr, R. L. (2018). Minke whales: *Balaenoptera acutorostrata* and *B. bonaerensis*. In *Encyclopedia of marine mammals* (pp. 608-613). Academic Press.
- Rao, C. V. (1991). Minke whale *Balaenoptera acutorostrata* caught off Kakinada coast. *Marine Fisheries Information Service, Technical and Extension Series*, 109, 15-16.
- Van Waerebeek, K., Baker, A. N., Félix, F., Gedamke, J., Iñiguez, M., Sanino, G. P., Secchi, E., Sutaria, D., van Helden, A., & Wang, Y. (2007). Vessel collisions with small cetaceans worldwide and with large whales in the Southern Hemisphere, an initial assessment. *Latin American Journal of Aquatic Mammals*, 43-69.
- Van Waerebeek, K., Vely, M. A., Sequeira, M., Martín, V., Robineau, D., Collet, A., Papastavrou, V., & Ndiaye, E. (1999). Spatial and temporal distribution of the minke whale, *Balaenoptera acutorostrata* (Lacépède, 1804), in the southern northeast Atlantic Ocean and the Mediterranean Sea, with reference to stock identity. *J. Cetacean Res. Manage.*, 1(3), 223-238.

Bryde's Whale

Allison, C. (2017). International Whaling Commission Catch Data Base v. 6.1.

- Anderson, J. (1878). Anatomical and zoological researches: comprising an account of the zoological results of the two expeditions to western Yunnan in 1868 and 1875; and a monograph of the Two Cetacean Genera, Platanista and Orcella. Bernard Quaritch, London, UK.
- Anderson, R. C. (2005). Observations of cetaceans in the Maldives, 1990-2002. *J. Cetacean Res. Manage.*, 7(2), 119-135.
- Andrews, R. C. (1918). A note on the skeletons of *Balaenoptera edeni*, Anderson, in the Indian Museum, Calcutta. *Records of the Zoological Survey of India*, 105-107.
- Berzin, A. A. (2008). The truth about Soviet whaling (Marine Fisheries Review). P 57.
- Best, P. B. (1977). Two allopatric forms of Bryde's whale off South Africa. Report of the International Whaling Commission (Special Issue 1), 10-38.
- Best, P. B. (2001). Distribution and population separation of Bryde's whale *Balaenoptera edeni* off southern Africa. *Marine Ecology Progress Series*, 220, 277-289.
- Bryde's Whale. IWC. https://iwc.int/about-whales/whale-species/brydes-whale. Accessed on 03 March 2025.
- Bryde's Whale. NOAA Fisheries. https://www.fisheries.noaa.gov/species/brydes-whale. Accessed on 30 January 2025.
- Committee on Taxonomy. (2021). List of marine mammal species and subspecies. *Society for Marine Mammalogy*. https://www.marinemammalscience.org/species-information/list-marine-mammal-species-subspecies/. Accessed date: 03 March 2025.
- Constantine, R., Johnson, M., Riekkola, L., Jervis, S., Kozmian-Ledward, L., Dennis, T., Torres, L.G., & de Soto, N. A. (2015). Mitigation of vessel-strike mortality of endangered Bryde's whales in the Hauraki Gulf, New Zealand. *Biological Conservation*, *186*, 149-157.
- Cooke, J.G., & Brownell Jr., R.L. 2018. *Balaenoptera edeni. The IUCN Red List of Threatened Species* 2018. Accessed on 30 January 2025.
- Corkeron, P., Reeves, R., & Rosel, P. (2017). *Balaenoptera edeni* (Gulf of Mexico subpopulation). *The IUCN Red List of Threatened Species*, 2017-3.
- de Silva, P. H. D. H. (1987). Cetaceans (whales, dolphins and porpoises) recorded off Sri Lanka, India, from the Arabian Sea and Gulf, Gulf of Aden and from the Red Sea. *Journal of the Bombay Natural History Society*, 84(3), 505-525.
- Junge, G. C. A. (1950). On a specimen of the rare fin whale, *Balaenoptera edeni* Anderson, stranded on Pulu Sugi near Singapore. *Zoologische Verhandelingen*, 9(1), 1-26.
- Kanda, N., Goto, M., Kato, H., McPhee, M. V., & Pastene, L. A. (2007). Population genetic structure of Bryde's whales (*Balaenoptera brydei*) at the inter-oceanic and trans-equatorial levels. *Conservation Genetics*, 8, 853-864.
- Kato, H., & Perrin, W. F. (2018). Bryde's whale: *Balaenoptera edeni*. In *Encyclopedia of marine mammals* (pp. 143-145). Academic Press.
- Kawamura, A. (1977). On the food of Bryde's whales caught in the South Pacific and Indian Oceans. *Sci. Rep. Whales Res. Inst*, 29, 49-58.
- Kershaw, F., Leslie, M. S., Collins, T., Mansur, R. M., Smith, B. D., Minton, G., Baldwin, R., LeDuc, R.G., Anderson, R.C., Brownell Jr, R.L., & Rosenbaum, H. C. (2013). Population differentiation of 2 forms of Bryde's whales in the Indian and Pacific Oceans. *Journal of Heredity*, 104(6), 755-764.
- Lal Mohan, R. S. (1992). Observations on the whales *Balaenoptera edeni*, *B. musculus* and *Megaptera novaeangliae* washed ashore along the Indian coast with a note on their osteology. *Journal of the Marine Biological Association of India*, 34(1&2), 253-255.
- Mikhalev, Y. A. (2000). Whaling in the Arabian Sea by the whaling fleets Slava and Sovetskaya Ukraina.

- Ohsumi, S. (1977). Bryde's whales in the pelagic whaling ground of the North Pacific. *Sci. Rep. Whale Res. Inst. Whal. Commn.*, (1), 140.
- Omura, H. (1959). Bryde's whale from the coast of Japan. Sci. Rep. Whales Res. Inst, 14, 1-33.
- Ramachandran, A., (2001). Rescue of a stranded whale in the Palk Strait, Tamil Nadu. *The Indian Forester*, 127(10), 1178-1184.
- Sasaki, H., Murase, H., Kiwada, H., Matsuoka, K., Mitani, Y., & Saitoh, S. I. (2013). Habitat differentiation between sei (*Balaenoptera borealis*) and Bryde's whales (*B. brydei*) in the western North Pacific. *Fisheries Oceanography*, 22(6), 496-508.
- Sathasivam, K. (2002). Two whale records from Tamil Nadu, southern India. *Journal-Bombay Natural History Society*, 99(2), 289-289.
- Soldevilla, M. S., Hildebrand, J. A., Frasier, K. E., Dias, L. A., Martinez, A., Mullin, K. D., Rosel, P.E., & Garrison, L. P. (2017). Spatial distribution and dive behavior of Gulf of Mexico Bryde's whales: potential risk of vessel strikes and fisheries interactions. *Endangered Species Research*, *32*, 533-550.
- Sudhan, C., Jawahar, P., Moulitharan, N., & Santhosh Kumar, S. (2017). Short communication on stranded Bryde's whale along Thoothukudi Coast of Tamil Nadu, India. *J Ent Zoo Stud*, *5*(2), 507-512.
- Tønnessen, J. N., & Johnsen, A. O. (1982). The history of modern whaling. Univ of California Press.
- Watanabe, H., Okazaki, M., Tamura, T., Konishi, K., Inagake, D., Bando, T., Kiwada, H., & Miyashita, T. (2012). Habitat and prey selection of common minke, sei, and Bryde's whales in mesoscale during summer in the subarctic and transition regions of the western North Pacific. *Fisheries Science*, 78, 557-567.

Blue Whale

- Afsal, V. V., Yousuf, K. S. S. M., Anoop, B., Anoop, A. K., Kannan, P., Rajagopalan, M., & Vivekanandan, E. (2008). A note on cetacean distribution in the Indian EEZ and contiguous seas during 2003-07. *Journal of Cetacean Research and Management*, 10(3), 209-216.
- Allison, C. (2017). International Whaling Commission Catch Data Base v. 6.1.
- Andersen, R. C., Branch, T. A., Alagiyawadu, A., Baldwin, R., & Marsac, F. (2012). Seasonal distribution, movements and taxonomic status of blue whales (*Balaenoptera musculus*) in the northern Indian Ocean. *J. Cetacean Res. Manage.*, 12(2), 203-218.
- Ballance, L. T., & Pitman, R. L. (1998). Cetaceans of the western tropical Indian Ocean: distribution, relative abundance, and comparisons with cetacean communities of two other tropical ecosystems. *Marine Mammal Science*, 14(3), 429-459.
- Berman-Kowalewski, M., Gulland, F. M., Wilkin, S., Calambokidis, J., Mate, B., Cordaro, J., Rotstein, D., St Leger, J., Collins, P., Fahy, K., & Dover, S. (2010). Association between blue whale (*Balaenoptera musculus*) mortality and ship strikes along the California coast. *Aquatic Mammals*, 36(1), 59-66.
- Blue Whale. IWC. https://iwc.int/about-whales/whale-species/blue-whale. Accessed on 03 March 2025.
- Blue Whale. NOAA Fisheries. https://www.fisheries.noaa.gov/species/blue-whale. Accessed on 25 January 2025.
- Blue Whale. ORCA Ireland. https://www.orcaireland.org/blue-whale. Accessed on 03 March 2025.
- Branch, T. A., Stafford, K. M., Palacios, D. M., Allison, C., Bannister, J. L., Burton, C. L. K., Cabrera, E., Carlson, C.A., Galletti Vernazzani, B., Gill, P.C. and Hucke-Gaete, R., Jenner, K. C. S., Jenner, M.-N. M., Matsuoka, K., Mikhalev, Y. A., Miyashita, T., Morrice, M. G., Nishiwaki, S., Sturrock, V. J., Tormosov, D., Anderson, R. C., Baker, A. N., Best, P. B., Borsa, P., Brownell Jr, R. L., Childerhouse, S., Findlay, K. P., Gerrodette, T., Ilangakoon, A. D., Joergensen, M., Kahn, B., Ljungblad, D. K., Maughan, B., Mccauley, R. D., Mckay, S., Norris, T. F., Oman Whale And Dolphin Research Group, Rankin, S., Samaran, F., Thiele, D., Van Waerebeek, K., & Warneke, R. M. (2007). Past and present distribution, densities and movements of blue whales *Balaenoptera musculus* in the Southern Hemisphere and northern Indian Ocean. *Mammal Review*, *37*(2), 116-175.

- Carretta, J.V., Forney, K.A., Oleson, E.M., Weller, D.W., Lang, A.R., Baker, J., Muto, M.M., Hanson B., Orr, A.J., Huber, H., Lowry, M.S., Barlow, J., Moore, J.E., Lynch, D., Carswell, L. and Brownell, R.L. Jr. (2017). U.S. Pacific Marine Mammal Stock Assessments: 2016. National Oceanic and Atmospheric Administration Technical Memorandum NMFS-SWFSC-577.
- Cerchio, S., Willson, A., Muirhead, C., Al Harthi, S., Baldwin, R., Bonato, M., Collins, T., Di Clemente, J., Dulau, V., Estrade, V., Latha, G., Minton, G., & Willson, M. S. (2018). Geographic variation in song indicates both isolation of Arabian Sea humpback whales and presence of Southern Hemisphere whales off Oman. *Paper SC/67b/CMP19 presented to the IWC Scientific Committee*.
- Committee on Taxonomy. (2021). List of marine mammal species and subspecies. *Society for Marine Mammalogy*. https://www.marinemammalscience.org/species-information/list-marine-mammal-species-subspecies/. Accessed date: 10 January 2025
- Cooke, J.G. 2018. *Balaenoptera musculus* (errata version published in 2019). *The IUCN Red List of Threatened Species* 2018. Accessed on 24 January 2025.
- Darby, A. (2009). Harpoon: into the heart of whaling. Da Capo Press.
- de Vos, A. (2015). "Marine life on the line". In Braun, D. (ed.). Deepwater Horizon oil spill: Final Programmatic Damage Assessment and Restoration Plan and Final Programmatic Environmental Impact Statement. National Geographic. p. 685.
- de Vos, A., Brownell Jr, R. L., Tershy, B., & Croll, D. (2016). Anthropogenic threats and conservation needs of blue whales, *Balaenoptera musculus indica*, around Sri Lanka. *Journal of Marine Sciences*, 2016(1), 8420846.
- de Vos, A., Faux, C. E., Marthick, J., Dickinson, J., & Jarman, S. N. (2018). New determination of prey and parasite species for Northern Indian Ocean blue whales. *Frontiers in Marine Science*, *5*, 104.
- de Vos, A., Pattiaratchi, C. B., & Wijeratne, E. M. S. (2014). Surface circulation and upwelling patterns around Sri Lanka. *Biogeosciences*, *11*(20), 5909-5930.
- Di Iorio, L., & Clark, C. W. (2010). Exposure to seismic survey alters blue whale acoustic communication. *Biology letters*, 6(1), 51-54.
- Goldbogen, J. A., Southall, B. L., DeRuiter, S. L., Calambokidis, J., Friedlaender, A. S., Hazen, E. L., Falcone, E. A., Schorr, G. S., Douglas, A., Moretti, D. J., Kyburg, C., McKenna, M. F., & Tyack, P. L. (2013). Blue whales respond to simulated mid-frequency military sonar. *Proceedings of the Royal Society B: Biological Sciences*, 280(1765), 20130657.
- Ilangakoon, A. D. (2012). Exploring anthropogenic activities that threaten endangered blue whales (*Balaenoptera musculus*) off Sri Lanka. *J. Mar. Anim. Ecol*, 5(1), 3-7.
- International Whaling Commission. 2018b. Catch Limits and Catches taken. Available at: <u>iwc.int\catches</u>. Accessed on 25 January 2025.
- Ivashchenko, Y. V., Clapham, P. J., & Brownell Jr, R. L. (2011). Soviet illegal whaling: the devil and the details.
- McDonald, M. A., Mesnick, S. L., & Hildebrand, J. A. (2006). Biogeographic characterization of blue whale song worldwide: using song to identify populations. *Journal of cetacean research and management*, 8(1), 55-65.
- Melcón, M. L., Cummins, A. J., Kerosky, S. M., Roche, L. K., Wiggins, S. M., & Hildebrand, J. A. (2012). Blue whales respond to anthropogenic noise. *PloS one*, 7(2), e32681.
- National Oceanic and Atmospheric Administration (NOAA). (2018). National Report on Large Whale Entanglements Confirmed in the United States in 2017. Available at https://www.fisheries.noaa.gov/resource/document/national-report-large-whale-entanglements-2017
- Oliver, C. W. (2020). Recovery Plan for the Blue Whale (*Balaenoptera musculus*) (Report). National Oceanic and Atmospheric Administration.
- Panicker, D., & Stafford, K. M. (2021). Northern Indian Ocean blue whale songs recorded off the coast of India. *Marine Mammal Science*, (4), 1564-1571.

- Priyadarshana, T., Randage, S. M., Alling, A., Calderan, S., Gordon, J., Leaper, R., & Porter, L. (2016). Distribution patterns of blue whale (*Balaenoptera musculus*) and shipping off southern Sri Lanka. *Regional Studies in Marine Science*, *3*, 181-188.
- Priyadarshana, T., Randage, R., Alling, A., Calderan, S., Gordon, J., Leaper, R., & Porter, L. (2015). An update on work related to ship strike risk to Blue whales off southern Sri Lanka (Report). Vol. SC66A. The International Whaling Commission.
- Randage, S. M., Alling, A., Currier, K., & Heywood, E. (2014). Review of the Sri Lanka blue whale (*Balaenoptera musculus*) with observations on its distribution in the shipping lane. *J. Cetacean Res. Manage.*, 14, 43-49.
- Reeves, R. R., McClellan, K., & Werner, T. B. (2013). Marine mammal bycatch in gillnet and other entangling net fisheries, 1990 to 2011. *Endangered Species Research*, 20(1), 71-97.
- Rockwood, R. C., Calambokidis, J., & Jahncke, J. (2017). High mortality of blue, humpback and fin whales from modeling of vessel collisions on the US West Coast suggests population impacts and insufficient protection. *PLoS One*, *12*(8), e0183052.
- Sathasivam, K. (2000). A catalogue of Indian marine mammal records. *Blackbuck*, 16(2&3), 74pp.
- Sears, R. (1990). The Cortez blues. Whalewatcher, 24(2), 12-15.
- Sears, R., & Perrin, W. F. (2009). Blue whale: *Balaenoptera musculus*. In *Encyclopedia of marine mammals* (pp. 120-124). Academic Press.
- Southall, B. L., DeRuiter, S. L., Friedlaender, A., Stimpert, A. K., Goldbogen, J. A., Hazen, E., Casey, C., Fregosi, S., Cade, D.E., Allen, A.N., Harris, C.M., Schorr, G., Moretti, D., Guan, S., & Calambokidis, J. (2019). Behavioral responses of individual blue whales (*Balaenoptera musculus*) to mid-frequency military sonar. *Journal of Experimental Biology*, 222(5), jeb190637.
- Sutaria, D., Sule, M., Jog, K., Bopardikar, I., Jamalabad, A., & Panicker, D. (2017). Baleen whale records from India. *Paper SC/67a/CMP03rev1 presented to the IWC Scientific Committee*.
- Tønnessen, J. N., & Johnsen, A. O. (1982). The history of modern whaling. Univ of California Press.
- Vivekanandan, E., & Jeyabaskaran, R. (2012). *Marine mammal species of India*. Central Marine Fisheries Research Institute.
- Yamato, M., Ketten, D. R., Arruda, J., & Cramer, S. (2008). Biomechanical and structural modeling of hearing in baleen whales. *Bioacoustics*, 17(1-3), 100-102.

Humpback Whale

- Au, W. W. L., & Hastings, M. C. (2008). Principles of marine bioacoustics (Vol. 510). New York: Springer.
- Baker, C. S., Medrano-Gonzalez, L., Calambokidis, J., Perry, A., Pichler, F., Rosenbaum, H., Straley, J.M., Urban-Ramirez, J., Yamaguchi, M., & Von Ziegesar, O. (1998). Population structure of nuclear and mitochondrial DNA variation among humpback whales in the North Pacific. *Molecular Ecology*, 7(6), 695-707.
- Baker, C. S., Slade, R. W., Bannister, J. L., Abernethy, R. B., Weinrich, M. T., Lien, J., Urban, J., Corkeron, P., Calmabokidis, J., Vasquez, O., & Palumbi, S. R. (1994). Hierarchical structure of mitochondrial DNA gene flow among humpback whales *Megaptera novaeangliae*, world-wide. *Molecular ecology*, *3*(4), 313-327.
- Basran, C. J., Bertulli, C. G., Cecchetti, A., Rasmussen, M. H., Whittaker, M., & Robbins, J. (2019). First estimates of entanglement rate of humpback whales *Megaptera novaeangliae* observed in coastal Icelandic waters. *Endangered species research*, 38, 67-77.
- Besseling, E., Foekema, E. M., Van Franeker, J. A., Leopold, M. F., Kühn, S., Rebolledo, E. L. B., Heße, E., Mielke, L., IJzer, J., Kamminga, P., & Koelmans, A. A. (2015). Microplastic in a macro filter feeder: humpback whale *Megaptera novaeangliae*. *Marine pollution bulletin*, *95*(1), 248-252.

- Bettridge, S., Baker, C. S., Barlow, J., Clapham, P., Ford, M. J., Gouveia, D., Mattila, D.K., Pace, R.M., Rosel, P.E., Silber, G.K., & Wade, P. R. (2015). Status review of the humpback whale (*Megaptera novaeangliae*) under the Endangered Species Act.
- Calambokidis, J., Falcone, E. A., Quinn, T. J., Burdin, A. M., Clapham, P. J., Ford, J. K., Gabriele, C.M., LeDuc, R., Mattila, D., Rojas-Bracho, L., Straley, J.M., Taylor, B. L., Urbán J., Weller, D., Witteveen, B. H., Yamaguchi, M., Bendlin, A., Camacho, D., Flynn, K., Havron, A., Huggins, J., & Maloney, N. (2008). SPLASH: Structure of populations, levels of abundance and status of humpback whales in the North Pacific. *Final report for Contract AB133F-03-RP-00078*, *57*.
- Carretta, J.V., Forney, K.A., Oleson, E.M., Weller, D.W., Lang, A.R., Baker, J., Muto, M.M., Hanson B., Orr, A.J., Huber, H., Lowry, M.S., Barlow, J., Moore, J.E., Lynch, D., Carswell, L. and Brownell, R.L. Jr. (2017). U.S. Pacific Marine Mammal Stock Assessments: 2016. National Oceanic and Atmospheric Administration Technical Memorandum NMFS-SWFSC-577.
- Clapham, P. J. (1996). The social and reproductive biology of humpback whales: an ecological perspective. *Mammal Review*, 26(1), 27-49.
- Clapham, P. J. (2018). Humpback whale: *Megaptera novaeangliae*. In *Encyclopedia of marine mammals* (pp. 489-492). Academic Press.
- Clapham, P. J., & Baker, C.S. (2002). Modern whaling. Pages 1328-1332. Perrin, W. F., Würsig, B., & Thewissen, J. G. M. (Eds.). (2009). *Encyclopedia of marine mammals*. Academic Press.
- Clapham, P. J., & Mead, J. G. (1999). Megaptera novaeangliae. Mammalian Species, (604), 1-9.
- Cooke, J.G. (2018). Megaptera novaeangliae. The IUCN Red List of Threatened Species 2018. Accessed on 03 February 2025.
- Dawbin, W. H. (1966). *The seasonal migratory cycle of humpback whales* (pp. 145-170). Berkeley, CA: University of California Press.
- Desforges, J. P. W., Galbraith, M., & Ross, P. S. (2015). Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. *Archives of environmental contamination and toxicology*, 69, 320-330.
- Fleming, A., & Jackson, J. (2011). Global review of humpback whales (*Megaptera novaeangliae*). NOAA Technical Memorandum NMFS-SWFSC-474.
- Hayes, S.A., Josephson, E., Maze-Foley, K, and Rosel, P.E. (eds). (2017). US Atlantic and Gulf of Mexico Marine Mammal Stock Assessments 2016. National Oceanic and Atmospheric Administration Technical Memorandum NMFS-NE-241.
- Hoyt, E. (2009). Whale watching. In Encyclopedia of marine mammals (pp. 1223-1227). Academic Press.
- Hughes, M. (2018). Data extracted from National Progress Reports. Report of the subcommittee on human-induced mortality, Appendix 3. *J. Cetacean Res. Manage* 19(suppl.): 253-256.
- Humpback Whale Recovery Team (1991). Final recovery plan for the humpback whale. *Megaptera novaeangliae*.
- Humpback Whale. IWC. https://iwc.int/about-whales/whale-species/humpback-whale. Accessed on 03 March 2025.
- Humpback Whale. ORCA Ireland. https://www.orcaireland.org/humpback-whale. Accessed on 03 March 2025.
- Humpback Whale. WDC. https://uk.whales.org/whales-dolphins/species-guide/humpback-whale/. Accessed on 03 March 2025.
- Huntington, H. P., Sakakibara, C., Noongwook, G., Kanayurak, N., Skhauge, V., Zdor, E., Inutiq, S., & Lyberth, B. (2021). Whale hunting in Indigenous Arctic cultures. In *The Bowhead Whale* (pp. 501-517). Academic Press
- Jefferson, T. A., Stacey, P. J., & Baird, R. W. (1991). A review of killer whale interactions with other marine mammals: predation to co-existence. *Mammal review*, 21(4), 151-180.

- Kavanagh, A. S., Owen, K., Williamson, M. J., Blomberg, S. P., Noad, M. J., Goldizen, A. W., Kniest, E., Cato, D.H., & Dunlop, R. A. (2017). Evidence for the functions of surface-active behaviors in humpback whales (*Megaptera novaeangliae*). *Marine Mammal Science*, 33(1), 313-334.
- Ketten, D. R., Lien, J., & Todd, S. (1993). Blast injury in humpback whale ears: Evidence and implications. *The Journal of the Acoustical Society of America*, *94*(3_Supplement), 1849-1850.
- Mackintosh, N. A. (1965). The Stocks of Whales Fishing News.
- Madhusudhana, S. K., Chakraborty, B., & Latha, G. (2019). Humpback whale singing activity off the Goan coast in the Eastern Arabian Sea. *Bioacoustics*, 28(4), 329-344.
- Mann, J. (Ed.). (2000). Cetacean societies: field studies of dolphins and whales. University of Chicago Press.
- Mehta, A. V., Allen, J. M., Constantine, R., Garrigue, C., Jann, B., Jenner, C., Marx, M.K., Matkin, C.O., Mattila, D.K., Minton, G., Mizroch, S.A., Olavarría, C., Robbins, J., Russell, K. G., Seton, R. E., Steiger, G. H., Víkingsson, G. A., Wade, P. R., Witteveen, B. H., & Clapham, P. J. (2007). Baleen whales are not important as prey for killer whales *Orcinus orca* in high-latitude regions. *Marine Ecology Progress Series*, 348, 297-307.
- Mikhalev, Y.A. 2000. Biological characteristics of humpbacks taken in Antarctic Area V by the whaling fleets Slava and Sovietskaya Ukraina. Unpublished report to the Scientific Committee of the International Whaling Commission, unpublished SC/52/IA.
- Minton, G., Collins, T., Findlay, K., Ersts, P., Rosenbaum, H., Berggren, P., & Baldwin, R. (2011). Seasonal distribution, abundance, habitat use and population identity of humpback whales in Oman. *J. Cetacean Res. Manage.*, 185-198.
- Muto, M., Helker, V.T., Angliss, R.P., Allen, B.A., Boveng, P.L., Breiwick, J.M., Cameron, M.F., Clapham, P., Dahle, S.P., Dahlheim, M.E., & Fadely, B.S. (2017). Alaska marine mammal stock assessments, 2016. NOAA Technical Memorandum NMFS-AFSC-355.
- Nowacek, D. P., Thorne, L. H., Johnston, D. W., & Tyack, P. L. (2007). Responses of cetaceans to anthropogenic noise. *Mammal Review*, *37*(2), 81-115.
- Payne, R. S., & McVay, S. (1971). Songs of Humpback Whales: Humpbacks emit sounds in long, predictable patterns ranging over frequencies audible to humans. *Science*, *173*(3997), 585-597.
- Pomilla, C., & Rosenbaum, H. C. (2005). Against the current: an inter-oceanic whale migration event. *Biology Letters*, 1(4), 476-479.
- Rowntree, V. J. (1996). Feeding, distribution, and reproductive behavior of cyamids (Crustacea: Amphipoda) living on humpback and right whales. *Canadian Journal of Zoology*, 74(1), 103-109.
- Scheidat, M., Castro, C., Gonzalez, J., & Williams, R. (2004). Behavioural responses of humpback whales (*Megaptera novaeangliae*) to whalewatching boats near Isla de la Plata, Machalilla National Park, Ecuador. *J. Cetacean Res. Manage.*, 6(1), 63-68.
- Senigaglia, V., Christiansen, F., Bejder, L., Gendron, D., Lundquist, D., Noren, D. P., Schaffar, A., Smith, J.C., Williams, R., Martinez, E., Stockin, K., & Lusseau, D. (2016). Meta-analyses of whale-watching impact studies: comparisons of cetacean responses to disturbance. *Marine Ecology Progress Series*, 542, 251-263.
- Sutaria, D. (2018). Baleen whale reports from the eastern Arabian Sea based on interview surveys and stranding reports—update from India. *Paper SC/67b/CMP15 presented to the IWC Scientific Committee*.
- Tønnessen, J. N., & Johnsen, A. O. (1982). The history of modern whaling. Univ of California Press.
- Townsend, C. H. (2014). The distribution of certain whales as shown by logbook records of American whaleships.
- Tyack, P. (1981). Interactions between singing Hawaiian humpback whales and conspecifics nearby. *Behavioral ecology and sociobiology*, *8*, 105-116.
- Weilgart, L. S. (2007). A brief review of known effects of noise on marine mammals. *International Journal of Comparative Psychology*, 20(2).

Yablokov, A. V. (1997). "On the Soviet Whaling Falsification, 1947–1972". Whales Alive!. 6 (4). Cetacean Society International. Retrieved 04-02-2025.

Cuvier's Beaked Whale

- Baird, R.W., Brownell Jr., R.L., & Taylor, B.L. (2020). *Ziphius cavirostris. The IUCN Red List of Threatened Species* 2020. Accessed on 04 February 2025.
- Ballardini, M., Pusser, T., & Nani, B. (2005, April). Photo-identification of Cuvier's beaked whales (*Ziphius cavirostris*) in the northern Ligurian Sea. In *Proceedings of the 14th annual conference of the European cetacean society, La Rochelle* (pp. 4-7).
- Cañadas, A., & Notobartolo, G. (2018). Ziphius cavirostris. The IUCN Red List of Threatened Species 2018.
- Capelli, R., Das, K., De Pellegrini, R., Drava, G., Lepoint, G., Miglio, C., Mingati, V., & Poggi, R. (2008). Distribution of trace elements in organs of six species of cetaceans from the Ligurian Sea (Mediterranean), and the relationship with stable carbon and nitrogen ratios. *Science of the Total Environment*, 390(2-3), 569-578.
- Carretta, J., Barlow, J., & Enriquez, L. (2008). Acoustic pingers eliminate beaked whale bycatch in a gill net fishery. *Publications, Agencies and Staff of the US Department of Commerce*, 47.
- Chakraborty, M & Mukherjee, K. (2021, August). 'West Bengal: Elusive whale washed onto Bakkhali beach'. *The Times of India*. https://timesofindia.indiatimes.com/city/kolkata/elusive-whale-washed-onto-bakkhali-beach/articleshow/84957333.cms.
- Chatterjee, B. (2019, July). 'Carcass of rare whale washes ashore beach in Maharashtra's Raigad district'.

 Hindustan Times.

 https://www.hindustantimes.com/mumbai-news/carcass-of-rare-whale-washes-ashore-beach-in-maharasht-ra-s-raigad-district/story-JLbAHvzfwEqT9UjgN0WjZN.html.
- Cuvier's Beaked Whale. NOAA Fisheries. https://www.fisheries.noaa.gov/species/cuviers-beaked-whale. Accessed on 03 March 2025.
- Cuvier's Beaked Whale. ORCA Ireland. https://www.orcaireland.org/cuviers-beaked-whale. Accessed on 03 March 2025.
- Cuvier's Beaked Whale. WDC. https://uk.whales.org/whales-dolphins/species-guide/cuviers-beaked-whale/. Accessed on 03 March 2025.
- D'Amico, A., Bergamasco, A., Zanasca, P., Carniel, S., Nacini, E., Portunato, N., Teloni, V., Mori, C., & Barbanti, R. (2003). Qualitative correlation of marine mammals with physical and biological parameters in the Ligurian Sea. *IEEE Journal of Oceanic Engineering*, 28(1), 29-43.
- Fernández, A., Edwards, J. F., Rodriguez, F., De Los Monteros, A. E., Herraez, P., Castro, P., Jaber, J. R., Martin, V., & Arbelo, M. (2005). "Gas and fat embolic syndrome" involving a mass stranding of beaked whales (family Ziphiidae) exposed to anthropogenic sonar signals. *Veterinary pathology*, 42(4), 446-457.
- Frantzis, A. (1998). Does acoustic testing strand whales?. Nature, 392(6671), 29-29.
- Heyning, J. E., & Mead, J. G. (2009). Cuvier's Beaked Whale: *Ziphius cavirostris*. In *Encyclopedia of marine mammals* (pp. 294-295). Academic Press.
- Holcer, D., Di Sciara, G. N., Fortuna, C. M., Lazar, B., & Onofri, V. (2007). Occurrence of Cuvier's beaked whales in the southern Adriatic Sea: evidence of an important Mediterranean habitat. *Journal of the Marine Biological Association of the United Kingdom*, 87(1), 359-362.
- Holcer, D., Fortuna, C. M., & Mackelworth, P. C. (2014). Status and conservation of cetaceans in the Adriatic Sea.
- Jepson, P. D., Arbelo, M., Deaville, R., Patterson, I. A. P., Castro, P., Baker, J. R., Degollada, E., Ross, H.M., Herráez, P., Pocknell, A.M., Rodriguez, F., Howie, F. E., Espinosa, A., Reid, R. J., Jaber, J. R., Martin, V., Cunningham, A. A., & Fernández, A. (2003). Gas-bubble lesions in stranded cetaceans. *Nature*, *425*(6958), 575-576.

- Julian, F., & Beeson, M. (1998). and seabird mortality for two California gillnet fisheries: 1990–1995. *Fishery Bulletin*, 96, 271-284.
- MacLeod, C. D., Santos, M. B., & Pierce, G. J. (2003). Review of data on diets of beaked whales: evidence of niche separation and geographic segregation. *Journal of the Marine Biological Association of the United Kingdom*, 83(3), 651-665.
- Marine Mammal Research and Conservation Network of India (MMRCNI). Stranding of Cuvier's beaked whale in Gujarat on 28-06-2015 recorded by Dipani Sutaria. https://www.marinemammals.in/database/sightings-and-strandings. Accessed on 05 February 2025.
- Naik, U. G., Haragi, S. B., & Durgekar, R. (2015). First stranding record of Cuvier's Beaked Whale (*Ziphius cavirostris*) at Karnataka coast, West Coast of India.
- Notarbartolo di Sciara, G. (1990). A note on the cetacean incidental catch in the Italian driftnet swordfish fishery, 1986-1988. Report of the International Whaling Commission, 40, 459-460.
- Oppili, P. (2016, May). 'Cuvier's Beaked Whale washed ashore near Kalpakkam'. *The Hindu*. https://www.thehindu.com/news/cities/chennai/cuviers-beaked-whale-washed-ashore-near-kalpakkam/article5707015.ece.
- Pillai, C. G., Mohan, M., & Kunhikoya, K. K. (1981). On a new record of Cuvier's beaked whale *Ziphius carvirostris* from the Indian waters. *Journal of the Marine Biological Association of India*, 23(1&2), 218-220.
- Podestà, M., & Meotti, C. (1991). The stomach contents of a Cuvier's beaked whale *Ziphius cavirostris*, and a Risso's dolphin *Grampus griseus*, stranded in Italy. *European Research on Cetaceans*, 5, 58-61.
- Podestà, M., Azzellino, A., Cañadas, A., Frantzis, A., Moulins, A., Rosso, M., Tepsich, P., & Lanfredi, C. (2016). Cuvier's beaked whale, *Ziphius cavirostris*, distribution and occurrence in the Mediterranean Sea: high-use areas and conservation threats. In *Advances in marine biology* (Vol. 75, pp. 103-140). Academic Press.
- Podestà, M., D'Amico, A., Pavan, G., Drougas, A., Komnenou, A., & Portunato, N. (2006). A review of Cuvier's beaked whale strandings in the Mediterranean Sea. *J. Cetacean Res. Manage.*, 7(3), 251-261.
- Poncelet, E., Van Canneyt, O., & Boubert, J. J. (2000). Considerable amount of plastic debris in the stomach of a Cuvier's beaked whale (*Ziphius cavirostris*) washed ashore on the French Atlantic coast. *European Research on Cetaceans*, 14, 44-47.
- Quick, N. J., Cioffi, W. R., Shearer, J. M., Fahlman, A., & Read, A. J. (2020). Extreme diving in mammals: first estimates of behavioural aerobic dive limits in Cuvier's beaked whales. *Journal of Experimental Biology*, 223(18), jeb222109.
- Schorr, G. S., Falcone, E. A., Moretti, D. J., & Andrews, R. D. (2014). First long-term behavioral records from Cuvier's beaked whales (*Ziphius cavirostris*) reveal record-breaking dives. PloS one, 9(3), e92633.
- Simmonds, M. P. (2012). Cetaceans and marine debris: the great unknown. *Journal of Marine Sciences*, 2012(1), 684279.
- Van der Kooij, J., Engelhard, G. H., & Righton, D. A. (2016). Climate change and squid range expansion in the North Sea. *Journal of Biogeography*, 43(11), 2285-2298.

Pygmy Sperm Whale

- Baird, R. W. (2016). The lives of Hawai 'i's dolphins and whales: natural history and conservation. University of Hawaii press.
- Berrow, S. D., & Rogan, E. (1997). Review of cetaceans stranded on the Irish coast, 1901–95. *Mammal Review*, 27(1), 51-75.
- Bryan, C. E., Davis, W. C., McFee, W. E., Neumann, C. A., Schulte, J., Bossart, G. D., & Christopher, S. J. (2012). Influence of mercury and selenium chemistries on the progression of cardiomyopathy in pygmy sperm whales, *Kogia breviceps. Chemosphere*, 89(5), 556-562.

- Clark, C. W., Ellison, W. T., Southall, B. L., Hatch, L., Van Parijs, S. M., Frankel, A., & Ponirakis, D. (2009). Acoustic masking in marine ecosystems: intuitions, analysis, and implication. *Marine Ecology Progress Series*, 395, 201-222.
- de Canarias, G. (2018). Informe de cetaceos varados 2000-2018. 13p.
- Dunphy-Daly, M. M., Heithaus, M. R., & Claridge, D. E. (2008). Temporal variation in dwarf sperm whale (*Kogia sima*) habitat use and group size off Great Abaco Island, Bahamas. *Marine Mammal Science*, 24(1), 171-182.
- Evans, P. G. (2019). European whales, dolphins, and porpoises: marine mammal conservation in practice. Academic Press.
- Fernandez, R., Santos, M. B., Carrillo, M., Tejedor, M., & Pierce, G. J. (2009). Stomach contents of cetaceans stranded in the Canary Islands 1996–2006. *Journal of the Marine Biological Association of the United Kingdom*, 89(5), 873-883.
- Hodge, L. E., Baumann-Pickering, S., Hildebrand, J. A., Bell, J. T., Cummings, E. W., Foley, H. J., McAlarney, R. J., McLellan, W. A., Pabst, D. A., Swaim, Z. T., Waples, D. M., & Read, A. J. (2018). Heard but not seen: Occurrence of *Kogia* spp. along the western North Atlantic shelf break. *Marine Mammal Science*, 34(4), 1141-1153.
- Jefferson, T. A., Leatherwood, S., & Webber, M. A. (1993). *Marine mammals of the world*. Food & Agriculture Org.
- Jefferson, T. A., Webber, M. A., & Pitman, R. L. (2011). *Marine mammals of the world: a comprehensive guide to their identification*. Elsevier.
- McAlpine, D. F. (2014). Family *Kogiidae* (pygmy and dwarf sperm whales). *Handbook of the mammals of the world*, 4, 318-325.
- McAlpine, D. F. (2018). Pygmy and dwarf sperm whales: *Kogia breviceps* and *K. sima*. In *Encyclopedia of marine mammals* (pp. 786-788). Academic Press.
- Nair, S. (2020, May). 'Maharashtra: Carcasses of two whale species washed ashore on Dahanu coast in 24 hours'. *The Times of India*. https://timesofindia.indiatimes.com/city/mumbai/maharashtra-carcasses-of-two-whale-species-washed-as hore-dahanu-coast-in-24-hours/articleshow/75947319.cms.
- Nelms, S. E., Barnett, J., Brownlow, A., Davison, N. J., Deaville, R., Galloway, T. S., Lindeque, P. K., Santillo, D., & Godley, B. J. (2019). Microplastics in marine mammals stranded around the British coast: ubiquitous but transitory? *Scientific Reports*, 9(1), 1075.
- Notarbartolo di Sciara, G., Kerem, D., Smeenk, C., Rudolph, P., Cesario, A., Costa, M., Elasar, M., Feingold, D., Fumagalli, M., Goffman, O., Hadar, N., Mebrathu, Y.T., & Scheinin, A. (2017). Cetaceans of the red sea. *CMS technical series*, *33*, 86.
- Notarbartolo di Sciara, G., Kerem, D., Smeenk, C., Rudolph, P., Cesario, A., Costa, M., Elasar, M., Feingold, D., Fumagalli, M., Goffman, O., Hadar, N., Mebrathu, Y.T., & Scheinin, A. (2017). Cetaceans of the red sea. *CMS technical series*, *33*, 86.
- Nowacek, D. P., Thorne, L. H., Johnston, D. W., & Tyack, P. L. (2007). Responses of cetaceans to anthropogenic noise. *Mammal Review*, *37*(2), 81-115.
- Parsons, E. C. M., Dolman, S. J., Wright, A. J., Rose, N. A., & Burns, W. C. G. (2008). Navy sonar and cetaceans: Just how much does the gun need to smoke before we act?. *Marine pollution bulletin*, 56(7), 1248-1257.
- Plön, S. (2004). The status and natural history of pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales off Southern Africa (Doctoral dissertation, Rhodes University).
- Pygmy Sperm Whale. NOAA Fisheries. https://www.fisheries.noaa.gov/species/pygmy-sperm-whale. Accessed on 03 March 2025.
- Sathasivam, K. (2000). A catalogue of Indian marine mammal records. *Blackbuck*, 16(2&3), 74pp.

- Scott, M. D., Hohn, A. A., Westgate, A. J., Nicolas, J. R., Whitaker, B. R., & Campbell, W. B. (2001). A note on the release and tracking of a rehabilitated pygmy sperm whale (*Kogia breviceps*). *J. Cetacean Res. Manage.*, 3(1), 87-94.
- Stamper, M. A., Whitaker, B. R., & Schofield, T. D. (2006). Case study: morbidity in a pygmy sperm whale *Kogia breviceps* due to ocean-bourne plastic. *Marine Mammal Science*, 22(3).
- Wang, J. Y., & Yang, S. C. (2006). Unusual cetacean stranding events of Taiwan in 2004 and 2005. *J. Cetacean Res. Manage.*, 8(3), 283-292.
- West, K., Walker, W., Baird, R., White, W., Levine, G., Brown, E., & Schofield, D. (2009). Diet of pygmy sperm whales (*Kogia breviceps*) in the Hawaiian Archipelago. *Publications, Agencies and Staff of the US Department of Commerce*, 18.
- Williams, R., Cholewiak, D., Clark, C. W., Erbe, C., George, C., Lacy, R., Leaper, R., Sue, M., Leslie, N., Chris, P., Howard, R., Rowles, T., Mark, S., Raphaela, S., & Wright, A. (2020). Chronic ocean noise and cetacean population models. *J. Cetacean Res. Manage.*, *21*, 85-94.
- Yang, W. C., Chou, L. S., Jepson, P. D., Brownell, R. L., Cowan, D., Chang, P. H., Chiou, H. I., Yao, C. J., Yamada, T. K., Chiu, J. T., Wang, P. J., & Fernández, A. (2008). Unusual cetacean mortality event in Taiwan, possibly linked to naval activities. *Veterinary Record*, 162(6), 184.

Dwarf Sperm Whale

- Aneesh Kumar, K. V., Baby, S. T., Dhaneesh, K. V., Manjebrayakath, H., Saravanane, N., & Sudhakar, M. (2019). A Stranding Record of Dwarf Sperm Whale *Kogia sima* in Lakshadweep Archipelago, India and its Genetic Analogy by Molecular Phylogeny. *Thalassas: An International Journal of Marine Sciences*, 35(1), 239-245.
- Arbelo, M., de Los Monteros, A. E., Herráez, P., Andrada, M., Sierra, E., Rodríguez, F., Jepson, P. D., & Fernández, A. (2013). Pathology and causes of death of stranded cetaceans in the Canary Islands (1999–2005). *Diseases of aquatic organisms*, 103(2), 87-99.
- Baird, R. W., Webster, D. L., Aschettino, J. M., Schorr, G. S., & McSweeney, D. J. (2013). Odontocete cetaceans around the main Hawaiian Islands: Habitat use and relative abundance from small-boat sighting surveys. *Aquatic Mammals*, 39(3).
- Bhalerao, S. (2022, January). 'Maharashtra coastline witnesses increase in marine animals getting stranded'. *The Indian Express*. https://indianexpress.com/article/cities/mumbai/maharashtra-coastline-witnesses-increase-in-marine-anim als-getting-stranded-7713813/.
- Bloch, D., & Mikkelsen, B. (2009). A northernmost record of dwarf sperm whale (*Kogia sima*)(Owen, 1866) from the Faroe Islands. *Aquatic Mammals*, 35(2), 306.
- Braulik, G. T., Kasuga, M., Wittich, A., Kiszka, J. J., MacCaulay, J., Gillespie, D., Gordon, J., Said, S. S., & Hammond, P. S. (2018). Cetacean rapid assessment: An approach to fill knowledge gaps and target conservation across large data deficient areas. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 28(1), 216-230.
- Cañadas, A., & Vázquez, J. A. (2017). Common dolphins in the Alboran Sea: Facing a reduction in their suitable habitat due to an increase in Sea surface temperature. *Deep Sea Research Part II: Topical Studies in Oceanography*, *141*, 306-318.
- Chandrasekar, K., & Kumar, S. (2024). Pregnant dwarf sperm whale (*Kogia sima*) stranding in Palk Bay, India: Insights and significance of stranding records. *J. Cetacean Res. Manage.*, 25, 19-22.
- Clark, C. W., Ellison, W. T., Southall, B. L., Hatch, L., Van Parijs, S. M., Frankel, A., & Ponirakis, D. (2009). Acoustic masking in marine ecosystems: intuitions, analysis, and implication. *Marine Ecology Progress Series*, 395, 201-222.
- de Silva, P. H. D. H. (1987). Cetaceans (whales, dolphins and porpoises) recorded off Sri Lanka, India, from the Arabian Sea and Gulf, Gulf of Aden and from the Red Sea. *Journal of the Bombay Natural History Society*, 84(3), 505-525.

- de Souza, G. (2019, September). 'Two weeks later, whale carcass continues to rot on Goa beach'. *Hindustan Times*.

 https://www.hindustantimes.com/india-news/two-weeks-later-whale-carcass-continues-to-rot-on-goa-beach/story-ZxO54aib7p20TMUI7iI8wI.html.
- Dunphy-Daly, M. M., Heithaus, M. R., & Claridge, D. E. (2008). Temporal variation in dwarf sperm whale (*Kogia sima*) habitat use and group size off Great Abaco Island, Bahamas. *Marine Mammal Science*, 24(1), 171-182.
- Dwarf Sperm Whale. NOAA Fisheries. https://www.fisheries.noaa.gov/species/dwarf-sperm-whale. Accessed on 03 March 2025.
- Fire, S. E., Wang, Z., Leighfield, T. A., Morton, S. L., McFee, W. E., McLellan, W. A., Litaker, R. W., Tester, P. A., Hohn, A. A., Lovewell, G., Harms, C., Rotstein, D. S., Barco, S. G., Costidis, A., Sheppard, B., Bossart, G. D., Stolen, M., Durden, W. N., & Van Dolah, F. M. (2009). Domoic acid exposure in pygmy and dwarf sperm whales (*Kogia* spp.) from southeastern and mid-Atlantic US waters. *Harmful Algae*, 8(5), 658-664.
- Gambaiani, D. D., Mayol, P., Isaac, S. J., & Simmonds, M. P. (2009). Potential impacts of climate change and greenhouse gas emissions on Mediterranean marine ecosystems and cetaceans. *Journal of the Marine biological Association of the United Kingdom*, 89(1), 179-201.
- Jefferson, T. A., Leatherwood, S., & Webber, M. A. (1993). *Marine mammals of the world*. Food & Agriculture Org.
- Jefferson, T. A., Webber, M. A., & Pitman, R. L. (2011). *Marine mammals of the world: a comprehensive guide to their identification*. Elsevier.
- Kiszka, J., Vely, M., & Breysse, O. (2010). Preliminary account of cetacean diversity and humpback whale (*Megaptera novaeangliae*) group characteristics around the Union of the Comoros (Mozambique Channel).
- MacLeod, C. D. (2009). Global climate change, range changes and potential implications for the conservation of marine cetaceans: a review and synthesis. *Endangered Species Research*, 7(2), 125-136.
- MacLeod, C. D., Bannon, S. M., Pierce, G. J., Schweder, C., Learmonth, J. A., Herman, J. S., & Reid, R. J. (2005). Climate change and the cetacean community of north-west Scotland. *Biological Conservation*, 124(4), 477-483.
- McAlpine, D. F. (2018). Pygmy and dwarf sperm whales: *Kogia breviceps* and *K. sima*. In *Encyclopedia of marine mammals* (pp. 786-788). Academic Press.
- Merkens, K., Mann, D., Janik, V. M., Claridge, D., Hill, M., & Oleson, E. (2018). Clicks of dwarf sperm whales (*Kogia sima*). *Marine Mammal Science*, *34*(4), 963-978.
- Mukherjee, K. (2023, July). 'Carcass of rare whale with propeller wounds washes ashore Digha beach'. *The Time of India*. https://timesofindia.indiatimes.com/city/kolkata/carcass-of-rare-whale-with-propeller-wounds-washes-as hore-digha-beach/articleshow/102220600.cms.
- Nowacek, D. P., Thorne, L. H., Johnston, D. W., & Tyack, P. L. (2007). Responses of cetaceans to anthropogenic noise. *Mammal Review*, *37*(2), 81-115.
- Parsons, E. C. M., Dolman, S. J., Wright, A. J., Rose, N. A., & Burns, W. C. G. (2008). Navy sonar and cetaceans: Just how much does the gun need to smoke before we act?. *Marine pollution bulletin*, 56(7), 1248-1257.
- Plön, S. (2004). The status and natural history of pygmy (Kogia breviceps) and dwarf (K. sima) sperm whales off Southern Africa (Doctoral dissertation, Rhodes University).
- Rudolph, P., & Smeenk, C. (2009). Indo-West pacific marine mammals. In *Encyclopedia of marine mammals* (pp. 608-616). Academic Press.

- Salvadeo, C. J., Lluch-Belda, D., Gómez-Gallardo, A., Urbán-Ramírez, J., & MacLeod, C. D. (2010). Climate change and a poleward shift in the distribution of the Pacific white-sided dolphin in the northeastern Pacific. *Endangered Species Research*, 11(1), 13-19.
- Sousa, A., Alves, F., Dinis, A., Bentz, J., Cruz, M. J., & Nunes, J. P. (2019). How vulnerable are cetaceans to climate change? Developing and testing a new index. *Ecological Indicators*, *98*, 9-18.
- Staudinger, M. D., McAlarney, R. J., McLellan, W. A., & Ann Pabst, D. (2014). Foraging ecology and niche overlap in pygmy (*Kogia breviceps*) and dwarf (*Kogia sima*) sperm whales from waters of the US mid-Atlantic coast. *Marine Mammal Science*, 30(2), 626-655.
- Weilgart, L. S. (2007). The impacts of anthropogenic ocean noise on cetaceans and implications for management. *Canadian journal of zoology*, 85(11), 1091-1116.
- Williams, R., Cholewiak, D., Clark, C. W., Erbe, C., George, C., Lacy, R., Leaper, R., Sue, M., Leslie, N., Chris, P., Howard, R., Rowles, T., Mark, S., Raphaela, S., & Wright, A. (2020). Chronic ocean noise and cetacean population models. *J. Cetacean Res. Manage.*, *21*, 85-94.
- Willis, P. M., & Baird, R. W. (1998). Status of the dwarf sperm whale, *Kogia simus*, with special reference to Canada. *Canadian Field-Naturalist*, 112(1), 114-125.
- Yang, W. C., Chou, L. S., Jepson, P. D., Brownell, R. L., Cowan, D., Chang, P. H., Chiou, H. I., Yao, C. J., Yamada, T. K., Chiu, J. T., Wang, P. J., & Fernández, A. (2008). Unusual cetacean mortality event in Taiwan, possibly linked to naval activities. *Veterinary Record*, 162(6), 184.

Sperm Whale

- Best, P. B. (1979). Social organization in sperm whales, *Physeter macrocephalus*. In *Behavior of marine animals: Current perspectives in research* (pp. 227-289). Boston, MA: Springer US.
- Fais, A., Lewis, T. P., Zitterbart, D. P., Álvarez, O., Tejedor, A., & Aguilar Soto, N. (2016). Abundance and distribution of sperm whales in the Canary Islands: Can sperm whales in the archipelago sustain the current level of ship-strike mortalities?. *PLoS One*, 11(3), e0150660.
- Gore, M. A., Ahmad, E., Ali, Q. M., Culloch, R. M., Hameed, S., Hasnain, S. A., Hussain, B., Kiani, S., Shaik, N., Siddiqui, P.J., & Ormond, R. F. (2007). Sperm whale, *Physeter macrocephalus*, stranding on the Pakistani coast. *Journal of the Marine Biological Association of the United Kingdom*, 87(1), 363-364.
- Gunnlaugsson, T., Víkingsson, G. A., & Pike, D. G. (2009). Combined line-transect and cue-count estimate of sperm whale abundance in the North Atlantic, from Icelandic NASS-2001 shipboard survey. *NAMMCO Scientific Publications*, 7, 73-80.
- International Whaling Commission. (IWC). (2020). Report of the IWC Workshop on Marine Debris: The Way Forward, 3–5 December 2019, La Garriga, Catalonia, Spain (Vol. 68). Paper SC.
- Joseph, R., Das, P. H., & Edwin, L. (2021). Cetacean fishery interaction during operation of major fishing systems of India.
- Laksith, T. I., & Nanayakkara, R. (2023). Distribution, Behaviour and Acoustic Repertoire of Sperm Whales off the Eastern half of the Gulf of Mannar, Sri Lanka. *Proceedings of the Annual Session 2023, Abstracts*. Department of Wildlife Conservation.
- Mazzariol, S., Centelleghe, C., Cozzi, B., Povinelli, M., Marcer, F., Ferri, N., Di Francesco, G., Badagliacca, P., Profeta, F., Olivieri, V. and Guccione, S., Cocumelli, C., Terracciano, G., Troiano, P., Beverelli, M., Garibaldi, F., Podestà, M., Marsili, L., Fossi, M. C., Mattiucci, S., Cipriani, P., De Nurra, D., Zaccaroni, A., Rubini, S., Berto, D., de Quiros, Y. B., Fernandez, A., Morell, M., Giorda, F., Pautasso, A., Modesto, P., Casalone, C., & Di Guardo, G. (2018). Multidisciplinary studies on a sick-leader syndrome-associated mass stranding of sperm whales (*Physeter macrocephalus*) along the Adriatic coast of Italy. *Scientific Reports*, 8(1), 11577.
- Mikhalev, Y. (2020). Whales of the Southern Ocean: biology, whaling and perspectives of population recovery (Vol. 5). Springer Nature.

- Møhl, B., Wahlberg, M., Madsen, P. T., Heerfordt, A., & Lund, A. (2003). The monopulsed nature of sperm whale clicks. *The Journal of the Acoustical Society of America*, 114(2), 1143-1154.
- Notarbartolo di Sciara, G. (2014). Sperm whales, *Physeter macrocephalus*, in the Mediterranean Sea: a summary of status, threats, and conservation recommendations. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 24(S1), 4-10.
- Nowacek, D. P., Thorne, L. H., Johnston, D. W., & Tyack, P. L. (2007). Responses of cetaceans to anthropogenic noise. *Mammal Review*, *37*(2), 81-115.
- Perrin, W. F., Würsig, B., & Thewissen, J. G. M. (Eds.). (2009). Encyclopedia of marine mammals. Academic Press
- Pirotta, E., Booth, C. G., Costa, D. P., Fleishman, E., Kraus, S. D., Lusseau, D., Moretti, D., New, L.F., Schick, R.S., Schwarz, L.K., Simmons, S.E., Thomas, L., Tyack, P. L., Weise, M. J., Wells, R. S., & Harwood, J. (2018). Understanding the population consequences of disturbance. *Ecology and Evolution*, 8(19), 9934-9946.
- Pitman, R. L., Ballance, L. T., Mesnick, S. I., & Chivers, S. J. (2001). Killer whale predation on sperm whales: observations and implications. *Marine mammal science*, *17*(3), 494-507.
- Rice, D. W. (1989). Sperm whale *Physeter macrocephalus* Linnaeus, 1758. *Handbook of marine mammals*, 4, 177-233.
- Sathasivam, K. (2004). Marine mammals of India. Universities Press.
- Savery, L. C., Wise, J. T., Wise, S. S., Falank, C., Gianios Jr, C., Thompson, W. D., Perkins, C., Zheng, T., Zhu, C., & Wise Sr, J. P. (2014). Global assessment of arsenic pollution using sperm whales (*Physeter macrocephalus*) as an emerging aquatic model organism. *Comparative Biochemistry and Physiology Part C: Toxicology & Pharmacology*, 163, 55-63.
- Sperm Whale. IWC. https://iwc.int/about-whales/whale-species/sperm-whale. Accessed on 03 March 2025.
- Sperm Whale. NOAA Fisheries. https://www.fisheries.noaa.gov/species/sperm-whale. Accessed on 03 March 2025.
- Sperm Whale. WDC. https://www.orcaireland.org/sperm-whale. Accessed on 03 March 2025.
- Spitznagel, E. (2012, January). Ambergris, Treasure of the Deep. *Bloomberg L.P.* Accessed on 06 February 2025.
- Squadrone, S., Brizio, P., Chiaravalle, E., & Abete, M. C. (2015). Sperm whales (*Physeter macrocephalus*), found stranded along the Adriatic coast (Southern Italy, Mediterranean Sea), as bioindicators of essential and non-essential trace elements in the environment. *Ecological Indicators*, 58, 418-425.
- Steiner, L., Lamoni, L., Plata, M. A., Jensen, S. K., Lettevall, E., & Gordon, J. (2012). A link between male sperm whales, *Physeter macrocephalus*, of the Azores and Norway. *Journal of the Marine Biological Association of the United Kingdom*, 92(8), 1751-1756.
- Whitehead, H. (2003). Sperm whales: social evolution in the ocean. University of Chicago press.
- Whitehead, H. (2018). Sperm whale: *Physeter macrocephalus*. In Encyclopedia of marine mammals (pp. 919-925). Academic Press.
- Whitehead, H., & Shin, M. (2022). Current global population size, post-whaling trend and historical trajectory of sperm whales. *Scientific reports*, 12(1), 19468.
- Whitehead, H., Christal, J., & Dufault, S. (1997). Past and distant whaling and the rapid decline of sperm whales off the Galápagos Islands. *Conservation Biology*, 11(6), 1387-1396.

Common Dolphin

'10 fishermen on Tamil Nadu trawler held in Gujarat for 'hunting' dolphins'. (2023, March). *The Indian Express*.

- https://indianexpress.com/article/cities/rajkot/10-fishermen-on-tamil-nadu-trawler-held-in-gujarat-for-hunting-dolphins-8501564/
- Bearzi, G., Genov, T., Natoli, A., Gonzalvo, J. and Pierce, G. J. (2021). *Delphinus delphis* (Inner Mediterranean subpopulation). *The IUCN Red List of Threatened Species*.
- Bearzi, G., Holcer, D., & Notarbartolo di Sciara, G. (2004). The role of historical dolphin takes and habitat degradation in shaping the present status of northern Adriatic cetaceans. *Aquatic Conservation: Marine and freshwater ecosystems*, 14(4), 363-379.
- Best, P. B. (2007). Whales and Dolphins of the Southern African Subregion. Cambridge University Press, Cambridge, United Kingdom & Cape Town, South Africa, 338 pp. ISBN-13 978-0-521-89710-5.
- Braulik, G. T., Ranjbar, S., Owfi, F., Aminrad, T., Mohammad, S., & Dakhteh, H. (2010). Marine mammal records from Iran. *J. Cetacean Res. Manage.*, 11(1), 49-63.
- Caputo, M., Froneman, P. W., Du Preez, D., Thompson, G., & Plön, S. (2017). Long-term trends in cetacean occurrence during the annual sardine run off the Wild Coast, South Africa. *African Journal of Marine Science*, 39(1), 83-94.
- Committee on Taxonomy. (2021). List of marine mammal species and subspecies. *Society for Marine Mammalogy*. https://www.marinemammalscience.org/species-information/list-marine-mammal-species-subspecies/. Accessed date: 07 February 2025.
- Common Dolphin. IWC. https://iwc.int/about-whales/whale-species/common-dolphin. Accessed on 03 March 2025
- Common Dolphin. WDC. https://uk.whales.org/whales-dolphins/species-guide/common-dolphin/. Accessed on 03 March 2025.
- Delphinus delphis/capensis: Marine Mammal Research and Conservation Network of India (MMRCNI). https://www.marinemammals.in/mmi/cetacea/odontoceti/delphinidae/common-dolphin/. Accessed on 07 February 2025.
- Durante, C. A., Santos-Neto, E. B., Azevedo, A., Crespo, E. A., & Lailson-Brito, J. (2016). POPs in the South Latin America: Bioaccumulation of DDT, PCB, HCB, HCH and Mirex in blubber of common dolphin (*Delphinus delphis*) and Fraser's dolphin (*Lagenodelphis hosei*) from Argentina. Science of the Total Environment, 572, 352-360.
- Fearey, J., Elwen, S. H., James, B. S., & Gridley, T. (2019). Identification of potential signature whistles from free-ranging common dolphins (*Delphinus delphis*) in South Africa. *Animal cognition*, 22(5), 777-789.
- Findlay, K. P., Best, P. B., Ross, G. J. B., & Cockcroft, V. G. (1992). The distribution of small odontocete cetaceans off the coasts of South Africa and Namibia. *South African Journal of Marine Science*, *12*(1), 237-270.
- Hayes, S. A., Josephson, E., Maze-Foley, K., Rosel, & P. E. (2020). US Atlantic and Gulf of Mexico marine mammal stock assessments-2019.
- Hernandez-Gonzalez, A., Saavedra, C., Gago, J., Covelo, P., Santos, M. B., & Pierce, G. J. (2018). Microplastics in the stomach contents of common dolphin (*Delphinus delphis*) stranded on the Galician coasts (NW Spain, 2005–2010). *Marine Pollution Bulletin*, 137, 526-532.
- Heyning, J. E., & Perrin, W. F. (1994). Evidence for two species of common dolphins (genus *Delphinus*) from the eastern North Pacific. *Contributions in Science, Natural History Museum of Los Angels County*, 442, 1-35.
- Jefferson, T. A., Webber, M. A., & Pitman, R. L. (2011). *Marine mammals of the world: a comprehensive guide to their identification*. Elsevier.
- Jepson, P. D., Deaville, R., Acevedo-Whitehouse, K., Barnett, J., Brownlow, A., Brownell Jr, R. L., Clare, F.C., Davison, N., Law, R.J., Loveridge, J., Macgregor, S.K., Morris, S., Murphy, S., Penrose, R., Perkins, M. W., Pinn, E., Seibel, H., Siebert, U., Sierra, E., Simpson, V., Tasker, M. L., Tregenza, N., Cunningham, A.

- A., & Fernández, A. (2013). What caused the UK's largest common dolphin (*Delphinus delphis*) mass stranding event?. *PLoS One*, 8(4), e60953.
- Kasuya, T. (2017). Small cetaceans of Japan: exploitation and biology. CRC Press.
- Marçalo, A., Nicolau, L., Giménez, J., Ferreira, M., Santos, J., Araújo, H., Silva, A., Vingada, J., & Pierce, G. J. (2018). Feeding ecology of the common dolphin (*Delphinus delphis*) in Western Iberian waters: has the decline in sardine (*Sardina pilchardus*) affected dolphin diet?. *Marine Biology*, 165, 1-16.
- Meynier, L., Pusineri, C., Spitz, J., Santos, M. B., Pierce, G. J., & Ridoux, V. (2008). Intraspecific dietary variation in the short-beaked common dolphin *Delphinus delphis* in the Bay of Biscay: importance of fat fish. *Marine Ecology Progress Series*, 354, 277-287.
- Mintzer, V. J., Diniz, K., & Frazer, T. K. (2018). The use of aquatic mammals for bait in global fisheries. *Frontiers in Marine Science*, *5*, 191.
- Murphy, S., Evans, P. G., Pinn, E., & Pierce, G. J. (2021). Conservation management of common dolphins: Lessons learned from the North-East Atlantic. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 31, 137-166.
- Murphy, S., Law, R. J., Deaville, R., Barnett, J., Perkins, M. W., Brownlow, A., Penrose, R., Davison, N.J., Barber, J.L., & Jepson, P. D. (2018). Organochlorine contaminants and reproductive implication in cetaceans: a case study of the common dolphin. *Marine mammal ecotoxicology*, 3-38.
- Nelms, S. E., Barnett, J., Brownlow, A., Davison, N. J., Deaville, R., Galloway, T. S., Lindeque, P.K., Santillo, D., & Godley, B. J. (2019). Microplastics in marine mammals stranded around the British coast: ubiquitous but transitory?. *Scientific Reports*, *9*(1), 1075.
- Notarbartolo di Sciara, G., Kerem, D., Smeenk, C., Rudolph, P., Cesario, A., Costa, M., Elasar, M., Feingold, D., Fumagalli, M., Goffman, O., Hadar, N., Mebrathu, Y.T., & Scheinin, A. (2017). Cetaceans of the red sea. *CMS technical series*, *33*, 86.
- Peltier, H., Authier, M., Caurant, F., Dabin, W., Daniel, P., Dars, C., Demaret, F., Meheust, E., Van Canneyt, O., Spitz, J., & Ridoux, V. (2021). In the wrong place at the wrong time: identifying spatiotemporal co-occurrence of bycaught common dolphins and fisheries in the Bay of Biscay (NE Atlantic) from 2010 to 2019. Frontiers in Marine Science, 8, 617342.
- Perrin, W. F. (2018). Common dolphin: *Delphinus delphis*. In *Encyclopedia of marine mammals* (pp. 205-209). Academic Press.
- Pierce, G. J., Santos, M. B., Murphy, S., Learmonth, J. A., Zuur, A. F., Rogan, E., Bustamante, P., Caurant, F., Lahaye, V., Ridoux, V., Zegers, B. N., Mets, A., Addink, M., Smeenk, C., Jauniaux, T., Law, R., Dabin, W., López, A., Alonso Farré, J. M., González, A. F., Guerra, A., García-Hartmann, M., Reid, R. J., Moffat, C. F., Lockyer, C., & Boon, J. P. (2008). Bioaccumulation of persistent organic pollutants in female common dolphins (*Delphinus delphis*) and harbour porpoises (*Phocoena phocoena*) from western European seas: Geographical trends, causal factors and effects on reproduction and mortality. *Environmental Pollution*, 153(2), 401-415.
- Preen, A. (2004). Distribution, abundance and conservation status of dugongs and dolphins in the southern and western Arabian Gulf. *Biological Conservation*, *118*(2), 205-218.
- Santos, M. B., German, I., Correia, D., Read, F. L., Cedeira, J. M., Caldas, M., López, A., Velasco, F., & Pierce, G. J. (2013). Long-term variation in common dolphin diet in relation to prey abundance. *Marine Ecology Progress Series*, 481, 249-268.
- Sathasivam, K. (2000). A catalogue of Indian marine mammal records. *Blackbuck*, 16(2&3), 74pp.
- Scott, M. D., Lennert-Cody, C. E., Gerrodette, T., Chivers, S. J., Danil, K., Hohn, A. A., Duffy, L. M., Olson, R. J., Skaug, H. J., Minte-Vera, C. V., Fiedler, P. C., Balance, L. T., Forney, K. A., Hofmeister, J., Ferguson, M. C., & Barlow, J. (2018). Data available for assessing dolphin population status in the eastern tropical pacific ocean. *Inter-American Tropical Tuna Commission Special Report*, 23.
- Short-beaked Common Dolphin. ORCA Ireland. https://www.orcaireland.org/common-dolphin. Accessed on 03 March 2025.

- Song, K. J. (2014). Status of marine mammals in Korea. Ocean & coastal management, 91, 1-4.
- Spitz, J., Cherel, Y., Bertin, S., Kiszka, J., Dewez, A., & Ridoux, V. (2011). Prey preferences among the community of deep-diving odontocetes from the Bay of Biscay, Northeast Atlantic. *Deep Sea Research Part I: Oceanographic Research Papers*, 58(3), 273-282.
- Zemsky, V. A. (1994, June). History of the Russian fishery of dolphins in the Black Sea. In *Proceedings of the First International Symposium on the Marine Mammals of the Black Sea* (pp. 27-30). ACAR Matbaacilik AS.

Pygmy Killer Whale

- Allport, G. A., Curtis, C., Pampulim Simões, T., & Rodrigues, M. J. (2017). The first authenticated record of Pygmy Killer Whale (*Feresa attenuata* Gray 1874) in Mozambique; has it been previously overlooked? *Marine Biodiversity Records*, 10, 1-8.
- Baird, R. W. (2010). Pygmy killer whales (*Feresa attenuata*) or false killer whales (*Pseudorca crassidens*)? Identification of a group of small cetaceans seen off Ecuador in 2003. *Aquatic Mammals*, 36(3), 326.
- Baird, R. W. (2018). Pygmy killer whale: *Feresa attenuata*. In *Encyclopedia of marine mammals* (pp. 788-790). Academic Press.
- Baird, R. W., Schorr, G. S., Webster, D. L., McSweeney, D. J., Hanson, M. B., & Andrews, R. D. (2011). Movements of two satellite-tagged pygmy killer whales (*Feresa attenuata*) off the island of Hawai 'i.
- Brownell Jr, R. L., Yao, C. J., Lee, C. S., & Wang, M. C. (2009). Worldwide Review Of Pygmy Killer Whales, *Feresa attenuata*, Mass Strandings Reveals Taiwan Hot Spot.
- Carretta, J.V., Forney, K.A., Oleson, E.M., Weller, D.W., Lang, A.R., Baker, J., Muto, M.M., Hanson B., Orr, A.J., Huber, H., Lowry, M.S., Barlow, J., Moore, J.E., Lynch, D., Carswell, L., & Brownell, R.L. Jr. (2017). U.S. Pacific Marine Mammal Stock Assessments: 2016. National Oceanic and Atmospheric Administration Technical Memorandum NMFS-SWFSC-577.
- Castro, C. (2004). Encounter with a school of pygmy killer whales (*Feresa attenuata*) in Ecuador, southeast tropical Pacific. *Aquatic Mammals*, 30(3), 441-444.
- Cox, T. M., Ragen, T. J., Read, A. J., Vos, E., Baird, R. W., Balcomb, K., Barlow, J., Caldwell, J., Cranford, T., Crum, L., D'Amico, A., D'Spain, G., Fernandez, A., Finneran, J., Gentry, R., Gerth, W., Gulland, F., Hildebrand, J., Houser, D., Hullar, T., Jepson, P. D., Ketten, D., MacLeod, C. D., Miller, P., Moore, S., Mountain, D. C., Palka, D., Ponganis, P., Rommel, S., Rowles, T., Taylor, B., Tyack, P., Wartzok, D., Gisiner, R., Mead, J., & Benner, L. (2005). Understanding the impacts of anthropogenic sound on beaked whales. J. Cetacean Res. Manage., 7(3), 177-187.
- Debrah, J. S., Ofori-Danson, P. K., & Van Waerebeek, K. (2010). An update on the catch composition and other aspects of cetacean exploitation in Ghana. *Scientific Committee Document SC/62/SM10, International Whaling Commission*.
- Dolar, M. L. L. (1994). Incidental takes of small cetaceans in fisheries in Palawan, Central Visayas and northern Mindanao in the Philippines. *Reports of the International Whaling Commission Special Issue* 15: 355-363.
- Donahue, M. A., & Perryman, W. L. (2009). Pygmy Killer Whale: *Feresa attenuata*. In *Encyclopedia of marine mammals* (pp. 938-939). Academic Press.
- Elorriaga-Verplancken, F. R., Rosales-Nanduca, H., Paniagua-Mendoza, A., Martínez-Aguilar, S., Nader-Valencia, A. K., Robles-Hernández, R., Gómez-Díaz, F., & Urbán R, J. (2016). First Record of Pygmy Killer Whales (*Feresa attenuata*) in the Gulf of California, Mexico: Diet Inferences and Probable Relation with Warm Conditions During 2014. *Aquatic Mammals*, 42(1).
- Feresa attenuata: Marine Mammal Research and Conservation Network of India (MMRCNI). https://www.marinemammals.in/mmi/cetacea/odontoceti/delphinidae/common-dolphin/. Accessed on 03 March 2025.

- Findlay, K. P., Best, P. B., Ross, G. J. B., & Cockcroft, V. G. (1992). The distribution of small odontocete cetaceans off the coasts of South Africa and Namibia. *South African Journal of Marine Science*, *12*(1), 237-270.
- Fisher, M., Ghazanfar, S. A., & Spalton, A. (1999). The Natural History of Oman. A Festschrift for Michael Gallagher. Backhuys, Leiden, The Netherlands, 206pp.
- Jefferson, T. A., Webber, M. A., & Pitman, R. L. (2011). Marine mammals of the world: a comprehensive guide to their identification. Elsevier.
- Jeyabaskaran, R., Paul, S., Vivekanandan, E., & Yousuf, K. S. S. M. (2011). First record of pygmy killer whale *Feresa attenuata* Gray, 1874 from India with a review of their occurrence in the World Oceans. *Journal of the Marine Biological Association of India*, 53(2), 208-217.
- Madsen, P. T., Kerr, I., & Payne, R. (2004). Source parameter estimates of echolocation clicks from wild pygmy killer whales (*Feresa attenuata*)(L). *The Journal of the Acoustical Society of America*, 116(4), 1909-1912.
- Marine Mammal Research and Conservation Network of India (MMRCNI). Stranding of pygmy killer whale in Tamil Nadu on 18-05-2024 recorded by Dipani Sutaria. https://www.marinemammals.in/database/sightings-and-strandings. Accessed on 18 February 2025.
- McSweeney, D. J., Baird, R. W., Mahaffy, S. D., Webster, D. L., & Schorr, G. S. (2009). Site fidelity and association patterns of a rare species: pygmy killer whales (*Feresa attenuata*) in the main Hawaiian Islands. *Marine Mammal Science*, 25(3), 557-572.
- Perrin, W.F., Reeves, R.R., Dolar, M. L. L., Jefferson, T. A., Marsh, H., Wang, J. Y., & Estacion, J. (2005). Report of the Second Workshop on The Biology and Conservation of Small Cetaceans and Dugongs of South East Asia. W. F. Perrin, & R. R. Reeves (Eds.). UNEP-CMS.
- Perryman, W. L., & Foster, T. C. (1980). Preliminary report on predation by small whales, mainly the false killer whale *Pseudorca crassidens*, on dolphins (*Stenella* spp. and *Delphinus delphis*) in the eastern tropical Pacific. Southwest Fisheries Center.
- Pygmy Killer Whale. NOAA Fisheries. https://www.fisheries.noaa.gov/species/pygmy-killer-whale. Accessed on 03 March 2025.
- Ross, G. J. B., & Leatherwood, S. (1994). Pygmy killer whale *Feresa attenuata* Gray, 1874. *Handbook of marine mammals*, 5, 387-404.
- Sathasivam, K. (2000). A catalogue of Indian marine mammal records. *Blackbuck*, 16(2&3), 74pp.
- Southall, B. L., Nowacek, D. P., Miller, P. J., & Tyack, P. L. (2016). Experimental field studies to measure behavioral responses of cetaceans to sonar. *Endangered Species Research*, *31*, 293-315.
- Southall, B. L., Rowles, T., Gulland, F., Baird, R. W., & Jepson, P. D. (2013). Final report of the Independent Scientific Review Panel investigating potential contributing factors to a 2008 mass stranding of melon-headed whales (*Peponocephala electra*) in Antsohihy, Madagascar. *Independent Scientific Review Panel*, 75.
- Wang, J. Y., & Yang, S. C. (2006). Unusual cetacean stranding events of Taiwan in 2004 and 2005. *J. Cetacean Res. Manage.*, 8(3), 283-292.
- Waring G.T., Josephson E., Maze-Foley K., Rosel, P.E., (Eds.) (2013). U.S. Atlantic and Gulf of Mexico Marine Mammal Stock Assessments, 2012. NOAA Technical Memorandum NMFS-NE-223. National Marine Fisheries Service, Woods Hole, MA.

Short-finned Pilot Whale

- Alagarswami, K., Bensam, P., Rajapandian, M. E., & Fernando, A. B. (1973). Mass stranding of pilot whales in the Gulf of Mannar. *Indian Journal of Fisheries*, 20(2), 269-279.
- Alves, F., Quérouil, S., Dinis, A., Nicolau, C., Ribeiro, C., Freitas, L., Kaufmann, M., & Fortuna, C. (2013). Population structure of short-finned pilot whales in the oceanic archipelago of Madeira based on photo-identification and genetic analyses: Implications for conservation. *Aquatic Conservation: Marine and freshwater ecosystems*, 23(5), 758-776.

- Dolar, M. L. L., Leatherwood, S., Wood, C. J., Alava, M. N. R., Hill, C. L., & Aragones, L. V. (1994). Directed fisheries for cetaceans in the Philippines. *Reports of the International Whaling Commission*, 44, 439-449.
- Donoghue, M. (2003). Report on the workshop on interactions between cetaceans and longline fisheries. In *New England Aquarium Aquatic Forum Series Report* (Vol. 1, pp. 1-44).
- Fielding, R. (2013). Whaling futures: a survey of Faroese and Vincentian youth on the topic of artisanal whaling. *Society & Natural Resources*, 26(7), 810-826.
- Fielding, R., & Evans, D. W. (2014). Mercury in Caribbean dolphins (Stenella longirostris and Stenella frontalis) caught for human consumption off St. Vincent, West Indies. Marine pollution bulletin, 89(1-2), 30-34.
- Gaskin, D. E., Smith, G. J. D., Arnold, P. W., Louisy, M. V., Frank, R., Holdrinet, M., & McWade, J. W. (1974). Mercury, DDT, dieldrin, and PCB in two species of Odontoceti (Cetacea) from St. Lucia, Lesser Antilles. *Journal of the Fisheries Board of Canada*, 31(7), 1235-1239.
- Hayes, S.A., Josephson, E., Maze-Foley, K, and Rosel, P.E. (eds). (2017). US Atlantic and Gulf of Mexico Marine Mammal Stock Assessments 2016. National Oceanic and Atmospheric Administration Technical Memorandum NMFS-NE-241.
- Heimlich-Boran, J. R. (1993). Social organisation of the short-finned pilot whale, Globicephala macrorhynchus, with special reference to the comparative social ecology of delphinids (Doctoral dissertation, University of Cambridge, Department of Zoology).
- Hohn, A. A., Rotstein, D. S., Harms, C. A., & Southall, B. L. (2006). Report on marine mammal unusual mortality event UMESE0501Sp: Multispecies mass stranding of pilot whales (*Globicephala macrorhynchus*), minke whale (*Balaenoptera acutorostrata*), and dwarf sperm whales (*Kogia sima*) in North Carolina on 15-16 January 2005.
- Jensen, F. H., Bejder, L., Wahlberg, M., Soto, N. A., Johnson, M., & Madsen, P. T. (2009). Vessel noise effects on delphinid communication. *Marine Ecology Progress Series*, 395, 161-175.
- Jerdan, T. C. (1984). A handbook of the mammals of India. Mittal Publications.
- Joseph, J. P. P., & Kumar, B. A. (2016, September). '81 whales washed ashore in Thoothukudi'. *The Hindu*. https://www.thehindu.com/news/national/tamil-nadu/81-whales-washed-ashore-in-Thoothukudi/article13 996014.ece
- Kasuya, T. (2017). Small cetaceans of Japan: exploitation and biology. CRC Press.
- Kasuya, T. (2018). Japanese Whaling. In Encyclopedia of Marine Mammals (pp. 1066-1070). Academic Press.
- Mignucci-Giannoni, A. A., Pinto-Rodríguez, B., Velasco-Escudero, M., Montoya-Ospina, R. A., Jiménez-Marrero, N. M., Rodriguez-Lopez, M. A., Williams, E.H., & Odell, D. K. (1999). Cetacean strandings in Puerto Rico and the Virgin Islands. *J. Cetacean Res. Manage.*, *1*(2), 191-198.
- Minton, G., Braulik, G., & Reeves, R. (2018). *Globicephala macrorhynchus. The IUCN Red List of Threatened Species* 2018: e.T9249A50355227. Accessed on 07 February 2025.
- Mintzer, V. J., Gannon, D. P., Barros, N. B., & Read, A. J. (2008). Stomach contents of mass-stranded short-finned pilot whales (*Globicephala macrorhynchus*) from North Carolina. *Marine Mammal Science*, 24(2), 290-302.
- Monteiro, S. S., Caurant, F., López, A., Cedeira, J., Ferreira, M., Vingada, J. V., Eira, C., & Méndez-Fernandez, P. (2017). Sympatric *Globicephala* species: feeding ecology and contamination status based on stable isotopes and trace elements. *Marine Ecology Progress Series*, 563, 233-247.
- Mustika, P. L. K. (2006). *Marine mammals in the Savu Sea (Indonesia): Indigenous knowledge, threat analysis and management options* (Doctoral dissertation, James Cook University).
- Norris, K. S., Wursig, B., Wells, R., & Wursig, M. (1994). The Hawaiian spinner dolphin University of California Press. *Berkeley, CA, USA: 1994436p*.
- Notarbartolo di Sciara, G. (2016). Marine Mammals in the Mediterranean Sea: An Overview. *Advances in marine biology*, 75, 1-36.

- Olson, P. A. (2009). Pilot Whales: *Globicephala melas* and *G. macrorhynchus*. In *Encyclopedia of marine mammals* (pp. 847-852). Academic Press.
- Pain, S. (2022, May). 'Call of the deep'. *Knowable Magazine*. Annual Reviews. https://knowablemagazine.org/content/article/living-world/2022/deep-diving-animals-ocean-twilight-zone. Accessed on 07 February 2025.
- Parsons, E. C. M. (2017). Impacts of navy sonar on whales and dolphins: now beyond a smoking gun?. Frontiers in Marine Science, 4, 295.
- Pilot Whale. IWC. https://iwc.int/about-whales/whale-species/pilot-whale. Accessed on 03 March 2025.
- Pilot Whale. ORCA Ireland. https://www.orcaireland.org/pilot-whale. Accessed on 03 March 2025.
- Ridgeway, S. H., & Harrison, R. J. (Eds.). (1981). Handbook of marine mammals. Academic Press Incorporated.
- Romanov, E. V. (2002). Bycatch in the tuna purse-seine fisheries of the western Indian Ocean.
- Short-finned Pilot Whale. NOAA Fisheries. https://www.fisheries.noaa.gov/species/short-finned-pilot-whale. Accessed on 03 March 2025.
- Simmonds, M. P., Haraguchi, K., Endo, T., Cipriano, F., Palumbi, S. R., & Troisi, G. M. (2002). Human health significance of organochlorine and mercury contaminants in Japanese whale meat. *Journal of toxicology and environmental health, Part A*, 65(17), 1211-1235.
- Téllez, R., Mignucci-Giannoni, A. A., & Caballero, S. (2014). Initial description of short-finned pilot whale (*Globicephala macrorhynchus*) genetic diversity from the Caribbean. *Biochemical Systematics and Ecology*, 56, 196-201.
- Thorne, L. H., Foley, H. J., Baird, R. W., Webster, D. L., Swaim, Z. T., & Read, A. J. (2017). Movement and foraging behavior of short-finned pilot whales in the Mid-Atlantic Bight: importance of bathymetric features and implications for management. *Marine Ecology Progress Series*, 584, 245-257.

Risso's Dolphin

- 'Dead Risso's dolphin washes ashore at Injambakkam'. (2023, December). *The Hindu*. https://www.thehindu.com/news/cities/chennai/dead-rissos-dolphin-washes-ashore-at-injambakkam/article67669094.ece
- Alling, A. (1986). Records of odontocetes in the northern Indian Ocean (1981-1982) and off the coast of Sri Lanka (1982-1984). *Journal of the Bombay Natural History Society. Bombay*, 83(2), 376-394.
- Barón, E., Hauler, C., Gallistl, C., Giménez, J., Gauffier, P., Castillo, J. J., Fernández-Maldonado, C., De Stephanis, R., Vetter, W., Eljarrat, E., & Barceló, D. (2015). Halogenated natural products in dolphins: brain-blubber distribution and comparison with halogenated flame retardants. *Environmental science & technology*, 49(15), 9073-9083.
- Bearzi, G., Reeves, R. R., Remonato, E., Pierantonio, N., & Airoldi, S. (2011). Risso's dolphin *Grampus griseus* in the Mediterranean Sea. *Mammalian Biology*, 76(4), 385-400.
- Bloch, D., Desportes, G., Harvey, P., Lockyer, C., & Mikkelsen, B. (2012). Life history of Risso's dolphin (*Grampus griseus*)(G. Cuvier, 1812) in the Faroe Islands. *Aquatic Mammals*, 38(3), 250.
- Capelli, R., Das, K., De Pellegrini, R., Drava, G., Lepoint, G., Miglio, C., Mingati, V., & Poggi, R. (2008). Distribution of trace elements in organs of six species of cetaceans from the Ligurian Sea (Mediterranean), and the relationship with stable carbon and nitrogen ratios. *Science of the Total Environment*, 390(2-3), 569-578.
- Chaitanya, S. V. K. (2020, April). 'Dolphins put up a rare show at Chennai's Kovalam beach. *The New Indian Express*.

 https://www.newindianexpress.com/cities/chennai/2020/Apr/30/dolphins-put-up-a-rare-show-at-chennais-kovalam-beach-2137237.html.
- Cockcroft, V. G., Haschick, S. L., & Klages, N. W. (1993). The diet of Risso's dolphin, *Grampus griseus* (Cuvier, 1812), from the east coast of South Africa. *Zeitschrift für Säugetierkunde*, 58(5), 286-293.

- Cox, T. M., Ragen, T. J., Read, A. J., Vos, E., Baird, R. W., Balcomb, K., Barlow, J., Caldwell, J., Cranford, T., Crum, L. and D'Amico, A., ... & Benner, L. (2005). Understanding the impacts of anthropogenic sound on beaked whales. *J. Cetacean Res. Manage.*, 7(3), 177-187.
- Davis, R. W., Fargion, G. S., May, N., Leming, T. D., Baumgartner, M., Evans, W. E., Hansen, L.J., & Mullin, K. (1998). Physical habitat of cetaceans along the continental slope in the northcentral and western Gulf of Mexico. *Marine Mammal Science*, 14(3), 490-507.
- Debrah, J. S., Ofori-Danson, P. K., & Van Waerebeek, K. (2010). An update on the catch composition and other aspects of cetacean exploitation in Ghana. *Scientific Committee Document SC/62/SM10, International Whaling Commission*.
- Dolar, M. L. L. (1994). Incidental takes of small cetaceans in fisheries in Palawan, central Visayas and northern Mindanao in the Philippines. *Report of the International Whaling Commission*, 15, 355-363.
- Dolar, M. L. L., Perrin, W. F., Taylor, B. L., Kooyman, G. L., & Alava, M. N. (2006). Abundance and distributional ecology of cetaceans in the central Philippines. *J. Cetacean Res. Manage.*, 8(1), 93-111.
- Evans, P. G. H. (2013). The Risso's dolphin in Europe. In *Grampus griseus 200th Anniversary: Risso's dolphins* in the contemporary world. Proceedings of the ECS Workshop Report. European Cetacean Society Conference, Galway, Ireland (pp. 10-24).
- Frantzis, A., & Herzing, D. L. (2002). Mixed-species associations of striped dolphins (*Stenella coeruleoalba*), short-beaked common dolphins (*Delphinus delphis*), and Risso's dolphins (*Grampus griseus*) in the Gulf of Corinth (Greece, Mediterranean Sea). *Aquatic Mammals*, 28(2), 188-197.
- Garrison, L. P. (2007). Interactions between marine mammals and pelagic longline fishing gear in the US Atlantic Ocean between 1992 and 2004.
- Hartman, K. L. (2018). Risso's dolphin: *Grampus griseus*. In *Encyclopedia of marine mammals* (pp. 824-827). Academic Press.
- Jefferson, T. A., Weir, C. R., Anderson, R. C., Ballance, L. T., Kenney, R. D., & Kiszka, J. J. (2014). Global distribution of Risso's dolphin *Grampus griseus*: a review and critical evaluation. *Mammal Review*, 44(1), 56-68
- Jepson, P. D., Deaville, R., Patterson, I. A. P., Pocknell, A. M., Ross, H. M., Baker, J. R., Howie, F. E., Reid, R. J., Colloff, A., & Cunningham, A. A. (2005). Acute and chronic gas bubble lesions in cetaceans stranded in the United Kingdom. *Veterinary Pathology*, 42(3), 291-305.
- Kasuya, T. (2018). Japanese Whaling. In Encyclopedia of Marine Mammals (pp. 1066-1070). Academic Press.
- Kiszka, J. (2015). Marine mammals: a review of status, distribution and interaction with fisheries in the Southwest Indian Ocean. Chapter 8: 303-323. *Van der Elst RP and Everett BI*.
- Kruse, S., Caldwell, D. K., & Caldwell, M. C. (1999). Risso's Dolphin-*Grampus griseus* (G. Cuvier, 1812). Handbook of Marine Mammals (Ridgway SH, Harrison SR Eds.) Vol. 6: The second book of dolphins and porpoises.
- Law, R. J., Barry, J., Barber, J. L., Bersuder, P., Deaville, R., Reid, R. J., Brownlow, A., Penrose, R., Barnett, J., Loveridge, J., Smith, B., & Jepson, P. D. (2012). Contaminants in cetaceans from UK waters: Status as assessed within the Cetacean Strandings Investigation Programme from 1990 to 2008. *Marine Pollution Bulletin*, 64(7), 1485-1494.
- Leatherwood, S. (1994). Re-estimation of incidental cetacean catches in Sri Lanka. *Report of the International Whaling Commission*, (Special issue 15), 64-65.
- Nowacek, D. P., Thorne, L. H., Johnston, D. W., & Tyack, P. L. (2007). Responses of cetaceans to anthropogenic noise. *Mammal Review*, *37*(2), 81-115.
- Oppili, P. (2016, May). 'Two dolphins washed ashore along east coast'. *The Hindu*. https://www.thehindu.com/news/cities/chennai/two-dolphins-washed-ashore-along-east-coast/article5774581.ece

- Öztürk, B., Salman, A., Öztürk, A. A., & Tonay, A. (2007). Cephalopod remains in the diet of striped dolphins (*Stenella coeruleoalba*) and Risso's dolphins (*Grampus griseus*) in the eastern Mediterranean Sea. *Vie milieu*, 57(1/2), 53-59.
- Perrin, W. F., Würsig, B., & Thewissen, J. G. M. (Eds.). (2009). Encyclopedia of marine mammals. Academic Press.
- Rajagopalan, M., James, D. B., Devadoss, P., Srinivasarengan, S., Selvaraj, V., & Thirumilu, P. (1984). On a record of incidental capture of Risso's Dolphin *Grampus griseus* (Cuvier) off Madras. *Journal of the Marine Biological Association of India*, 26(1&2), 171-174.
- Reeves, R. R., McClellan, K., & Werner, T. B. (2013). Marine mammal bycatch in gillnet and other entangling net fisheries, 1990 to 2011. *Endangered Species Research*, 20(1), 71-97.
- Risso's Dolphin. NOAA Fisheries. https://www.fisheries.noaa.gov/species/rissos-dolphin. Accessed on 03 March 2025.
- Risso's Dolphin. ORCA Ireland. https://www.orcaireland.org/rissos-dolphin. Accessed on 03 March 2025.
- Risso's Dolphin. WDC. https://uk.whales.org/whales-dolphins/species-guide/rissos-dolphin/. Accessed on 03 March 2025.
- Sabarros, P. S., Romanov, E., Le Foulgoc, L., Richard, E., Lamoureux, J. P., & Bach, P. (2013). Commercial catch and discards of pelagic longline fishery of Reunion Island based on the self-reporting data collection program. 9th IOTC Working Party on Ecosystems and Bycatch, La Réunion, France.
- Soldevilla, M. S., Wiggins, S. M., & Hildebrand, J. A. (2010). Spatial and temporal patterns of Risso's dolphin echolocation in the Southern California Bight. *The Journal of the Acoustical Society of America*, *127*(1), 124-132.
- Southall, B. L., Nowacek, D. P., Miller, P. J., & Tyack, P. L. (2016). Experimental field studies to measure behavioral responses of cetaceans to sonar. *Endangered Species Research*, *31*, 293-315.
- Storelli, M. M., Zizzo, N., & Marcotrigiano, G. O. (1999). Heavy metals and methylmercury in tissues of Risso's dolphin (*Grampus griseus*) and Cuvier's beaked whale (Ziphius cavirostris) stranded in Italy (South Adriatic sea).
- Visser, F., Hartman, K. L., Rood, E. J., Hendriks, A. J., Zult, D. B., Wolff, W. J., Huisman, J., & Pierce, G. J. (2011). Risso's dolphins alter daily resting pattern in response to whale watching at the Azores. *Marine Mammal Science*, 27(2), 366-381.
- Williams, R., Cholewiak, D., Clark, C. W., Erbe, C., George, C., Lacy, R., Leaper, R., Sue, M., Leslie, N., Chris, P., Howard, R., Rowles, T., Mark, S., Raphaela, S., & Wright, A. (2020). Chronic ocean noise and cetacean population models. *J. Cetacean Res. Manage.*, *21*, 85-94.
- Zucca, P., Di Guardo, G., Francese, M., Scaravelli, D., Genov, T., & Mazzatenta, A. (2005). Causes of stranding in four Risso's dolphins (*Grampus griseus*) found beached along the North Adriatic Sea coast. *Veterinary research communications*, 29, 261.

Killer Whale

- 'Killer whales sighted near Murdeshwar in Karnataka'. (2024, January). *The New Indian Express*. https://www.newindianexpress.com/states/karnataka/2024/Jan/17/killer-whales-sighted-near-murdeshwar-in-karnataka.
- 'Watch: Orcas spotted off the unlikely waters of India's west coast'. (2023, December). *The New Indian Express*. https://indianexpress.com/article/trending/trending-in-india/orcas-spotted-unlikely-waters-indias-west-coast-9065128/.
- Baird, R. W. (1998). Status of killer whales in Canada. Biology Department, Dalhousie University.
- Beck, S., Foote, A. D., Koetter, S., Harries, O., Mandleberg, L., Stevick, P. T., Whooley, P., & Durban, J. W. (2014). Using opportunistic photo-identifications to detect a population decline of killer whales (*Orcinus*

- orca) in British and Irish waters. Journal of the Marine Biological Association of the United Kingdom, 94(6), 1327-1333.
- Carwardine, M. (2001). *Killer whales*. DK Publishing (Dorling Kindersley).
- Chatterjee, B. (2019, April). 'Pod of 4 killer whales spotted off Sindhudurg coast in Maharashtra'. *Hindustan Times*.

 https://www.hindustantimes.com/mumbai-news/pod-of-4-killer-whales-spotted-off-sindhudurg-coast-in-maharashtra/story-orr4mX9lLBRshWwKxAftMO.html
- Dahlheim, M. E., & Heyning, J. E. (1999). Killer whale *Orcinus orca* (Linnaeus, 1758). *Handbook of marine mammals*, 6, 281-322.
- de Silva, P. H. D. H. (1987). Cetaceans (whales, dolphins and porpoises) recorded off Sri Lanka, India, from the Arabian Sea and Gulf, Gulf of Aden and from the Red Sea. *Journal of the Bombay Natural History Society*, 84(3), 505-525.
- Desforges, J. P., Hall, A., McConnell, B., Rosing-Asvid, A., Barber, J. L., Brownlow, A., De Guise, S., Eulaers, I., Jepson, P.D., Letcher, R.J. and Levin, M., Ross, P. S., Samarra, F., Víkingson, G., Sonne, C., & Dietz, R. (2018). Predicting global killer whale population collapse from PCB pollution. *Science*, *361*(6409), 1373-1376.
- Dietz, R., Letcher, R. J., Desforges, J. P., Eulaers, I., Sonne, C., Wilson, S., Andersen-Ranberg, E., Basu, N., Barst, B.D., Bustnes, J.O., Bytingsvik, J., ... & Víkingsson, G. (2019). Current state of knowledge on biological effects from contaminants on arctic wildlife and fish. *Science of the Total Environment*, 696, 133792.
- Donoghue, M., Reeves, R. R., & Stone, G. S. (2003). Report on the workshop on interactions between cetaceans and longline fisheries. In *New England Aquarium Aquatic Forum Series Report* (Vol. 1, pp. 1-44).
- Durban, J. W., & Pitman, R. L. (2012). Antarctic killer whales make rapid, round-trip movements to subtropical waters: evidence for physiological maintenance migrations?. *Biology letters*, 8(2), 274-277.
- Erbe, C. (2002). Underwater noise of whale-watching boats and potential effects on killer whales (*Orcinus orca*), based on an acoustic impact model. *Marine mammal science*, 18(2), 394-418.
- Esteban, R., Verborgh, P., Gauffier, P., Alarcón, D., Salazar-Sierra, J. M., Giménez, J., Foote, A.D., & De Stephanis, R. (2016). Conservation status of killer whales, *Orcinus orca*, in the Strait of Gibraltar. *Advances in marine biology*, 75, 141-172.
- Ferguson, S. H., Higdon, J. W., & Chmelnitsky, E. G. (2010). The rise of killer whales as a major Arctic predator. *A little less Arctic: Top predators in the world's largest northern inland sea, Hudson Bay*, 117-136.
- Ford, J. K. (2009). Killer whale: Orcinus orca. In Encyclopedia of marine mammals (pp. 650-657). Academic Press
- Ford, J. K., & Ellis, G. M. (1999). *Transients: mammal-hunting killer whales of British Columbia, Washington, and southeastern Alaska*. UBC Press.
- Ford, J. K., Ellis, G. M., Olesiuk, P. F., & Balcomb, K. C. (2010). Linking killer whale survival and prey abundance: food limitation in the oceans' apex predator? *Biology letters*, 6(1), 139-142.
- Forney, K. A., Wade, P. R., & Estes, J. A. (2006). Worldwide distribution and abundance of killer whales. Whales, whaling and ocean ecosystems, 145, 162.
- Heimlich, S., & Boran, J. (2001). Killer Whales. Stillwater, MN: Voyageur Press.
- Higdon, J. W., Hauser, D. D., & Ferguson, S. H. (2012). Killer whales (*Orcinus orca*) in the Canadian Arctic: distribution, prey items, group sizes, and seasonality. *Marine Mammal Science*, 28(2), E93-E109.
- Jefferson, T. A., Leatherwood, S., & Webber, M. A. (1993). *Marine mammals of the world*. Food & Agriculture Org.
- Jepson, P. D., Deaville, R., Barber, J. L., Aguilar, A., Borrell, A., Murphy, S., Barry, J., Brownlow, A., Barnett, J., Berrow, S., Cunningham, A. A., Davison, N. J., ten Doeschate, M., Esteban, R., Ferreira, M., Foote, A.

- D., Genov, T., Giménez, J., Loveridge, J., Llavona, Á., Martin, V., Maxwell, D. L., Papachlimitzou, A., Penrose, R., Perkins, M. W., Smith, B., de Stephanis, R., Tregenza, N., Verborgh, P., Fernandez, A., & Law, R. J. (2016). PCB pollution continues to impact populations of orcas and other dolphins in European waters. *Scientific reports*, 6(1), 1-17.
- Jourdain, E., Barrett-Lennard, L. G., Ellis, G. M., Ford, J. K., Karoliussen, R., Towers, J. R., & Vongraven, D. (2021). Natural entrapments of killer whales (*Orcinus orca*): A review of cases and assessment of intervention techniques. *Frontiers in Conservation Science*, 2, 707616.
- Jourdain, E., Ugarte, F., Víkingsson, G. A., Samarra, F. I., Ferguson, S. H., Lawson, J., Vongraven, D., & Desportes, G. (2019). North Atlantic killer whale *Orcinus orca* populations: a review of current knowledge and threats to conservation. *Mammal Review*, 49(4), 384-400.
- Killer Whale. IWC. https://iwc.int/about-whales/whale-species/killer-whale. Accessed on 03 March 2025.
- Killer Whale. ORCA Ireland. https://www.orcaireland.org/killer-whale. Accessed on 03 March 2025.
- Lennert, A. E., & Richard, G. (2017). At the cutting edge of the future: Unravelling depredation, behaviour and movement of killer whales in the act of flexible management regimes in Arctic Greenland. *Ocean & Coastal Management*, 148, 272-281.
- Matthews, C. J., Luque, S. P., Petersen, S. D., Andrews, R. D., & Ferguson, S. H. (2011). Satellite tracking of a killer whale (*Orcinus orca*) in the eastern Canadian Arctic documents ice avoidance and rapid, long-distance movement into the North Atlantic. *Polar Biology*, 34, 1091-1096.
- Mongillo, T. M., Holmes, E. E., Noren, D. P., VanBlaricom, G. R., Punt, A. E., Neill, S. M., Ylitalo, G.M., Hanson, M.B., & Ross, P. S. (2012). Predicted polybrominated diphenyl ether (PBDE) and polychlorinated biphenyl (PCB) accumulation in southern resident killer whales. *Marine Ecology Progress Series*, 453, 263-277.
- Monteiro, L. (2022, October). 'Out of the blue, two anglers spot, shoot two orcas in Goan waters'. https://timesofindia.indiatimes.com/city/goa/out-of-the-blue-two-anglers-spot-shoot-two-orcas-in-goan-waters/articleshow/94999390.cms
- Myers, R. A., & Worm, B. (2003). Rapid worldwide depletion of predatory fish communities. *Nature*, 423(6937), 280-283.
- Pitman, R. L., & Durban, J. W. (2012). Cooperative hunting behavior, prey selectivity and prey handling by pack ice killer whales (*Orcinus orca*), type B, in Antarctic Peninsula waters. *Marine Mammal Science*, 28(1), 16-36.
- Reeves, R. R. (2002). The origins and character of 'aboriginal subsistence' whaling: a global review. *Mammal Review*, 32(2), 71-106.
- Reeves, R. R., & Notarbartolo di Sciara, G. (2006). The status and distribution of cetaceans in the Black Sea and Mediterranean Sea.
- Reeves, R., Pitman, R. L., & Ford, J. K. B. (2017). *Orcinus orca. The IUCN Red List of Threatened Species* 2017. Accessed on 06 February 2025.
- Rice, D. W. (1998). Marine mammals of the world, systematics and distribution. *Society for Marine Mammalogy Special Publication*, *4*, 1-231.
- Ross, P. S., Ellis, G. M., Ikonomou, M. G., Barrett-Lennard, L. G., & Addison, R. F. (2000). High PCB concentrations in free-ranging Pacific killer whales, *Orcinus orca*: effects of age, sex and dietary preference. *Marine Pollution Bulletin*, 40(6), 504-515.
- Sathasivam, K. (2004). Marine mammals of India. Universities Press.
- Sigurjónsson, J., & Leatherwood, S. (1988). The Icelandic live-capture fishery for killer whales, 1976-1988. *Rit Fiskideildar* 11: 307-316.
- Veirs, S., Veirs, V., & Wood, J. D. (2016). Ship noise extends to frequencies used for echolocation by endangered killer whales. *PeerJ*, 4, e1657.
- Visser, I. N. (1999). Antarctic orea in New Zealand waters?.

- Ward, E. J., Holmes, E. E., & Balcomb, K. C. (2009). Quantifying the effects of prey abundance on killer whale reproduction. *Journal of Applied Ecology*, 46(3), 632-640.
- Westdal, K. H., Higdon, J. W., & Ferguson, S. H. (2017). Review of killer whale (*Orcinus orca*) ice entrapments and ice-related mortality events in the Northern Hemisphere. *Polar Biology*, 40(7), 1467-1473.
- Williams, R., Erbe, C., Ashe, E., Beerman, A., & Smith, J. (2014). Severity of killer whale behavioral responses to ship noise: A dose–response study. *Marine pollution bulletin*, 79(1-2), 254-260.
- Williams, R., Lusseau, D., & Hammond, P. S. (2006). Estimating relative energetic costs of human disturbance to killer whales (*Orcinus orca*). *Biological conservation*, 133(3), 301-311.
- Williams, R., Trites, A. W., & Bain, D. E. (2002). Behavioural responses of killer whales (*Orcinus orca*) to whale-watching boats: opportunistic observations and experimental approaches. *Journal of Zoology*, 256(2), 255-270.

Melon-headed Whale

- Amano, M., Yamada, T. K., Kuramochi, T., Hayano, A., Kazumi, A., & Sakai, T. (2014). Life history and group composition of melon-headed whales based on mass strandings in Japan. *Marine Mammal Science*, 30(2), 480-493.
- Aschettino, J. M., Baird, R. W., McSweeney, D. J., Webster, D. L., Schorr, G. S., Huggins, J. L., Martien, K. K., Mahaffy, S. D., & West, K. L. (2012). Population structure of melon-headed whales (*Peponocephala electra*) in the Hawaiian Archipelago: Evidence of multiple populations based on photo identification. *Marine Mammal Science*, 28(4), 666-689.
- Bachman, M. J., Keller, J. M., West, K. L., & Jensen, B. A. (2014). Persistent organic pollutant concentrations in blubber of 16 species of cetaceans stranded in the Pacific Islands from 1997 through 2011. *Science of the Total Environment*, 488, 115-123.
- Baird, R. W. (2016). The lives of Hawai 'i's dolphins and whales: natural history and conservation. University of Hawaii press.
- Baumann-Pickering, S., Roch, M. A., Wiggins, S. M., Schnitzler, H. U., & Hildebrand, J. A. (2015). Acoustic behavior of melon-headed whales varies on a diel cycle. *Behavioral Ecology and Sociobiology*, 69, 1553-1563.
- Best, P., & Shaughnessy, P. D. (1981). First record of the Melon-headed whale *Peponocephala electra* from South Africa. *Annals of the South African Museum* 83: 33-47.
- Bradford, A. L., Forney, K. A., Oleson, E. M., & Barlow, J. (2017). Abundance estimates of cetaceans from a line-transect survey within the US Hawaiian Islands Exclusive Economic Zone. *Fishery Bulletin*, *115*(2).
- Brownell Jr, R. L., Ralls, K., Baumann-Pickering, S., & Poole, M. M. (2009). Behavior of melon-headed whales, *Peponocephala electra*, near oceanic islands. *Marine Mammal Science*, 25(3), 639-658.
- Bryden, M. M., Harrison, R. J., & Lear, R. J. (1977). Some aspects of the biology of *Peponocephala electra* (Cetacea: Delphinidae). I. General and reproductive biology. *Marine and Freshwater Research*, 28(6), 703-715.
- Caldwell, D. K., & Caldwell, M. C. (1975). Dolphin and small whale fisheries of the Caribbean and West Indies: occurrence, history, and catch statistics—with special reference to the Lesser Antillean Island of St. Vincent. *Journal of the Fisheries Board of Canada*, 32(7), 1105-1110.
- Carwardine, M. (2017). Mark Carwardine's Guide to Whale Watching in North America. Bloomsbury Publishing.
- Dolar, M. L. L. (1994). Incidental takes of small cetaceans in fisheries in Palawan, central Visayas and northern Mindanao in the Philippines. *Report of the International Whaling Commission*, *15*, 355-363.
- Dulau-Drouot, V., Boucaud, V., & Rota, B. (2008). Cetacean diversity off La Réunion Island (France). *Journal of the Marine Biological Association of the United Kingdom*, 88(6), 1263-1272.

- Ilangakoon, A. (1997). Species composition, seasonal variation, sex ratio and body length of small cetaceans caught off west, south-west and south coast of Sri Lanka. *Journal-Bombay Natural History Society*, 94, 298-306.
- International Whaling Commission (IWC). (2018). Report of the scientific committee. *Journal of Cetacean Research and Management 19 (Supplement): 1-114.*
- Jefferson, T. A., & Barros, N. B. (1997). Peponocephala electra. Mammalian Species, (553), 1-6.
- Jefferson, T. A., Webber, M. A., & Pitman, R. L. (2011). *Marine mammals of the world: a comprehensive guide to their identification*. Elsevier.
- Jeyabaskaran, R., & Vivekanandan, E. (2013). Marine mammals and fisheries interactions in Indian seas.
- Kajiwara, N., Kamikawa, S., Amano, M., Hayano, A., Yamada, T. K., Miyazaki, N., & Tanabe, S. (2008). Polybrominated diphenyl ethers (PBDEs) and organochlorines in melon-headed whales, *Peponocephala electra*, mass stranded along the Japanese coasts: maternal transfer and temporal trend. *Environmental pollution*, 156(1), 106-114.
- Kiszka, J., Pelourdeau, D., & Ridoux, V. (2008). Body scars and dorsal fin disfigurements as indicators interaction between small cetaceans and fisheries around the Mozambique Channel island of Mayotte. Western Indian Ocean Journal of Marine Science, 7(2).
- Kiszka, J., Simon-Bouhet, B., Martinez, L., Pusineri, C., Richard, P., & Ridoux, V. (2011). Ecological niche segregation within a community of sympatric dolphins around a tropical island. *Marine Ecology Progress Series*, 433, 273-288.
- Kiszka, J., Vely, M., & Breysse, O. (2010). Preliminary account of cetacean diversity and humpback whale (*Megaptera novaeangliae*) group characteristics around the Union of the Comoros (Mozambique Channel).
- Melon-headed Whale. NOAA Fisheries. https://www.fisheries.noaa.gov/species/melon-headed-whale. Accessed on 03 March 2025.
- Melon-headed Whale. WDC https://uk.whales.org/whales-dolphins/species-guide/melon-headed-whale/. Accessed on 03 March 2025.
- Mintzer, V. J., Diniz, K., & Frazer, T. K. (2018). The use of aquatic mammals for bait in global fisheries. *Frontiers in Marine Science*, *5*, 191.
- Mullin, K. D., Jefferson, T. A., Hansen, L. J., & Hoggard, W. (1994). First sightings of melon-headed whales (*Peponocephala electra*) in the Gulf of Mexico. *Marine Mammal Science*, 10(3), 342-348.
- Mustika, P. L. K. (2006). Marine mammals in the Savu Sea (Indonesia): Indigenous knowledge, threat analysis and management options (Doctoral dissertation, James Cook University).
- Peponocephala electra: Marine Mammals Research and Conservation Network of India (MMRCNI). https://www.marinemammals.in/mmi/identification-guide/character-matrix-4/melon-headed-whale/.
- Perryman, W. L., & Danil, K. (2018). Melon-headed whale: *Peponocephala electra*. In *Encyclopedia of marine mammals* (pp. 593-595). Academic Press.
- Perryman, W. L., Au, D. W. K., Leatherwood, S., & Jefferson, T. A. (1994). Melon-headed whale *Peponocephala electra* Gray, 1846. *Handbook of marine mammals*, 5, 363-386.
- Southall, B. L., Braun, R. C., Gulland, F., Heard, A., Baird, R. W., & Wilkins, S. (2006). Hawaiian melon-headed whale (*Peponocephala electra*) mass stranding event of July 3-4, 2004.
- Southall, B. L., Rowles, T., Gulland, F., Baird, R. W., & Jepson, P. D. (2013). Final report of the Independent Scientific Review Panel investigating potential contributing factors to a 2008 mass stranding of melon-headed whales (*Peponocephala electra*) in Antsohihy, Madagascar. *Independent Scientific Review Panel*, 75.
- Spitz, J., Cherel, Y., Bertin, S., Kiszka, J., Dewez, A., & Ridoux, V. (2011). Prey preferences among the community of deep-diving odontocetes from the Bay of Biscay, Northeast Atlantic. *Deep Sea Research Part I: Oceanographic Research Papers*, 58(3), 273-282.

- Watkins, W. A., Daher, M. A., Samuels, A., & Gannon, D. P. (1997). Observations of *Peponocephala electra*, the melon-headed whale, in the southeastern Caribbean. *Caribbean Journal of Science*, *33*, 34-40.
- West, K. L., Walker, W. A., Baird, R. W., Webster, D. L., & Schorr, G. S. (2018). Stomach contents and diel diving behavior of melon-headed whales (*Peponocephala electra*) in Hawaiian waters.
- Yoshida, H., Compton, J., Punnett, S., Lovell, T., Draper, K., Franklin, G., Norris, N., Phillip, P., Wilkins, R., & Kato, H. (2010). Cetacean sightings in the eastern Caribbean and adjacent waters, spring 2004. *Aquatic Mammals*, 36(2).

False Killer Whale

- Aguayo, L. A. (1978). Smaller cetaceans in the Baltic Sea. Reports of the International Whaling Commission, 28, 131-146.
- Alonso, M. K., Pedraza, S. N., Schiavini, A. C., Goodall, R. N. P., & Crespo, E. A. (1999). Stomach contents of false killer whales (*Pseudorca crassidens*) stranded on the coasts of the Strait of Magellan, Tierra del Fuego. *Marine Mammal Science*, 15(3), 712-724.
- Anderson, R. C. (2014). Cetaceans and tuna fisheries in the Western and Central Indian Ocean. *International pole and line federation technical report*, 2, 133.
- Baird, R. W. (2009). False killer whale: *Pseudorca crassidens*. In *Encyclopedia of marine mammals* (pp. 405-406). Academic Press.
- Baird, R. W. (2016). The lives of Hawai 'i's dolphins and whales: natural history and conservation. University of Hawaii press.
- Baldwin, R., Van Waerebeek, K., & Gallagher, M. (1998). A review of small cetaceans from waters off the Arabian Peninsula. *IWC SC/50/SM6*, 1-24.
- Baum, J. K., Kehler, D., & Myers, R. A. (2005). Robust estimates of decline for pelagic shark populations in the northwest Atlantic and Gulf of Mexico. *Fisheries-Bethesda*, 30(10), 27.
- Baum, J. K., Myers, R. A., Kehler, D. G., Worm, B., Harley, S. J., & Doherty, P. A. (2003). Collapse and conservation of shark populations in the Northwest Atlantic. *Science*, 299(5605), 389-392.
- Cáceres-Saez, I., Haro, D., Blank, O., Lobo, A. A., Dougnac, C., Arredondo, C., Cappozzo, H. L., & Guevara, S. R. (2018). High status of mercury and selenium in false killer whales (*Pseudorca crassidens*, Owen 1846) stranded on Southern South America: A possible toxicological concern? *Chemosphere*, 199, 637-646.
- Caldwell, D. K., & Caldwell, M. C. (1975). Dolphin and small whale fisheries of the Caribbean and West Indies: occurrence, history, and catch statistics—with special reference to the Lesser Antillean Island of St. Vincent. *Journal of the Fisheries Board of Canada*, 32(7), 1105-1110.
- Caldwell, D. K., Caldwell, M. C., & Walker, C. M. (1970). Mass and individual strandings of False Killer Whales, *Pseudorca crassidens*, in Florida. *Journal of Mammalogy*, 51(3), 634-636.
- Carretta, J. V., Oleson, E. M., Weller, D. W., Lang, A. R., Forney, K. A., Baker, J. D., Hanson, B., Martien, K. K., Muto, M., Orr, A. J., Huber, H. R., Lowry, M. S., Barlow, J., Lynch, D., Carswell, L, Brownell, R. L., & Mattila, D. K. (2014). US Pacific marine mammal stock assessments, 2013.
- Coll, M., Libralato, S., Tudela, S., Palomera, I., & Pranovi, F. (2008). Ecosystem overfishing in the ocean. *PLoS one*, *3*(12), e3881.
- Dai, X. (2011). Annual report to the commission-Part 1: information on fisheries, research and statistics: China.
- Endo, T., Hisamichi, Y., Kimura, O., Haraguchi, K., Lavery, S., Dalebout, M. L., Funahashi, N., & Baker, C. S. (2010). Stable isotope ratios of carbon and nitrogen and mercury concentrations in 13 toothed whale species taken from the western Pacific Ocean off Japan. *Environmental science & technology*, 44(7), 2675-2681.
- False Killer Whale. IWC. https://iwc.int/about-whales/whale-species/false-killer-whale. Accessed on 03 March 2025.

- False Killer Whale. NOAA Fisheries. https://www.fisheries.noaa.gov/species/false-killer-whale. Accessed on 03 March 2025.
- Ferguson, M. C., & Barlow, J. (2003). Spatial distribution and density of cetaceans in the eastern tropical Pacific Ocean based on summer/fall research vessel surveys in 1986-96: Addendum.
- Foltz, K. M., Baird, R. W., Ylitalo, G. M., & Jensen, B. A. (2014). Cytochrome P4501A1 expression in blubber biopsies of endangered false killer whales (*Pseudorca crassidens*) and nine other odontocete species from Hawai 'i. *Ecotoxicology*, 23, 1607-1618.
- Forney, K. A., & Kobayashi, D. R. (2007). Updated estimates of mortality and injury of cetaceans in the Hawaii-based longline fishery, 1994-2005.
- Kasim, M. H., Ameer Hamsa, K. M. S., & Balasubramanian, T. S. (1993). On an accidental landing of false killer whale *Pseudorca crassidens* by drift gillnet off Veerpandianpatnam, Gulf of Mannar. *Marine Fisheries Information Service, Technical and Extension Series*, 120, 18-19.
- Kasuya, T. (2017). Small cetaceans of Japan: exploitation and biology. CRC Press.
- Kiszka, J., Bein, A., Bach, P., Jamon, A., Layssac, K., Labart, S., & Wickel, J. (2010). Catch and bycatch in the pelagic longline fishery around Mayotte (NE Mozambique Channel), July 2009-September 2010. *IOTC WPEB-19*.
- Kloepper, L. N., Nachtigall, P. E., Donahue, M. J., & Breese, M. (2012). Active echolocation beam focusing in the false killer whale, *Pseudorca crassidens*. *Journal of Experimental Biology*, *215*(8), 1306-1312.
- Koslow, J. A., Miller, E. F., & McGowan, J. A. (2015). Dramatic declines in coastal and oceanic fish communities off California. *Marine Ecology Progress Series*, 538, 221-227.
- Leatherwood, S., McDonald, D., Baird, R. W., & Scott, M. D. (1989). The false killer whale, Pseudorca crassidens (Owen, 1846): a summary of information available through 1988. Oceans Unlimited.
- Masski, H., & De Stéphanis, R. (2018). Cetaceans of the Moroccan coast: information from a reconstructed strandings database. *Journal of the Marine Biological Association of the United Kingdom*, 98(5), 1029-1037.
- Minamikawa, S., Watanabe, H., & Iwasaki, T. (2013). Diving behavior of a false killer whale, *Pseudorca crassidens*, in the Kuroshio-Oyashio transition region and the Kuroshio front region of the western North Pacific. *Marine Mammal Science*, 29(1).
- Nammalwar, P., Rajapackiam, S., & Rajan, S. (2002). On a false killer whale *Pseudorca craissidens* (Owen) caught at Ennore along the Chennai coast. *Marine Fisheries Information Service, Technical and Extension Series*, 173, 5-6.
- Notarbartolo di Sciara, G., Kerem, D., Smeenk, C., Rudolph, P., Cesario, A., Costa, M., Elasar, M., Feingold, D., Fumagalli, M., Goffman, O., Hadar, N., Mebrathu, Y.T., & Scheinin, A. (2017). Cetaceans of the red sea. *CMS technical series*, *33*, 86.
- Odell, D. K., & McClune, K. M. (1999). False killer whale *Pseudorca crassidens* (Owen, 1846). *Handbook of marine mammals*, 6, 213-243.
- Oleson, E. M., Boggs, C. H., Forney, K. A., Hanson, M. B., Kobayashi, D. R., Taylor, B. L., Wade, P. R., & Ylitalo, G. M. (2010). Status review of Hawaiian insular false killer whales (*Pseudorca crassidens*) under the Endangered Species Act.
- Perrin, W. F., Reeves, R. R., Dolar, M. L. L., Jefferson, T. A., Marsh, H., Wang, J. Y., & Estacion, J. (2005). Report of the Second Workshop on The Biology and Conservation of Small Cetaceans and Dugongs of South East Asia. W. F. Perrin, & R. R. Reeves (Eds.). UNEP-CMS.
- Polovina, J. J., Howell, E. A., & Abecassis, M. (2008). Ocean's least productive waters are expanding. *Geophysical Research Letters*, 35(3).
- Rao, P. V., Livingston, P., & Misra, A. (1989). Report on the whales sighted off Mandapam on the Palk bay side on 5th July, 1988. *Marine Fisheries Information Service, Technical and Extension Series*, 95, 10.

- Ravi, V., & Prabu, A. V. (2017). On the stranding of False Killer Whale *Pseudorca crassidens* Owen 1846 Parangipettai region southeast coast of India. *Ecology and Fisheries*, 10(2), 1-6.
- Reeves, R. R., McClellan, K., & Werner, T. B. (2013). Marine mammal bycatch in gillnet and other entangling net fisheries, 1990 to 2011. *Endangered Species Research*, 20(1), 71-97.
- Riccialdelli, L., & Goodall, N. (2015). Intra-specific trophic variation in false killer whales (*Pseudorca crassidens*) from the southwestern South Atlantic Ocean through stable isotopes analysis. *Mammalian Biology*, 80(4), 298-302.
- Scott, M. D., Hohn, A. A., Westgate, A. J., Nicolas, J. R., Whitaker, B. R., & Campbell, W. B. (2001). A note on the release and tracking of a rehabilitated pygmy sperm whale (*Kogia breviceps*). *J. Cetacean Res. Manage.*, 3(1), 87-94.
- Sightings and Standings Database. Marine Mammal Research & Conservation Network of India (MMRCNI). https://www.marinemammals.in/database/sightings-and-strandings/
- Song, K. J. (2018). Bycatch of cetaceans in Korea fisheries in the East Sea. Fisheries Research, 197, 7-9.
- SPC-OFP. (2010). Summary information on whale shark and cetacean interactions in the tropical WCPFC purse seine fishery. Report WCPFC7-2010-IP/01 of the Western and Central Pacific Fisheries Commission Seventh Regular Session, Honolulu, Hawaii, 6-10 December 2010.
- Thiagarajan, R., Nammalwar, P., & Ameer Hamsa, K. M. S. (1984). Stranding of *Pseudorca crassidens* at Rameswaram, Gulf of Mannar. *Marine Fisheries Information Service, Technical and Extension Series*, 55, 16-16.
- Ylitalo, G. M., Baird, R. W., Yanagida, G. K., Webster, D. L., Chivers, S. J., Bolton, J. L., Schorr, G. S., & McSweeney, D. J. (2009). High levels of persistent organic pollutants measured in blubber of island-associated false killer whales (*Pseudorca crassidens*) around the main Hawaiian Islands. *Marine Pollution Bulletin*, 58(12), 1932-1937.
- Zaeschmar, J. R., Dwyer, S. L., & Stockin, K. A. (2013). Rare observations of false killer whales (*Pseudorca crassidens*) cooperatively feeding with common bottlenose dolphins (*Tursiops truncatus*) in the Hauraki Gulf, New Zealand. *Marine Mammal Science*, 29(3).

Indo-Pacific Humpback Dolphin

- Chen, B., Zhai, F., Xu, X., & Yang, G. (2007). A preliminary analysis on the habitat selection of Chinese white dolphins (*Sousa chinensis*) in Xiamen waters, China. *Chinese Journal of Zoology*, 42, 102-105.
- Committee on Taxonomy. (2021). List of marine mammal species and subspecies. *Society for Marine Mammalogy*. https://www.marinemammalscience.org/species-information/list-marine-mammal-species-subspecies/. Accessed date: 10 January 2025
- Gui, D., Yu, R., He, X., Tu, Q., Chen, L., & Wu, Y. (2014). Bioaccumulation and biomagnification of persistent organic pollutants in Indo-Pacific humpback dolphins (*Sousa chinensis*) from the Pearl River Estuary, China. *Chemosphere*, 114, 106-113.
- Humpback Dolphin. IWC. https://www.int/en/species/humpback-dolphin. Accessed on 04 March 2025.
- Hung, S. K. (2014). Monitoring of marine mammals in Hong Kong waters (2013-14). *Agriculture, Fisheries and Conservation Department of Hong Kong SAR Government, Hong Kong*, 1-198.
- Hung, S. K., & Jefferson, T. A. (2004). Ranging patterns of Indo-Pacific humpback dolphins (*Sousa chinensis*) in the Pearl River estuary, Peoples Republic of China. *Aquatic Mammals*, 30(1), 159-174.
- Indo-Pacific Humpback Dolphin. WDC. https://uk.whales.org/whales-dolphins/species-guide/indo-pacific-humpback-dolphin/. Accessed on 04 March 2025.

- Jaaman, S. A., Lah-Anyi, Y. U., & Pierce, G. J. (2009). The magnitude and sustainability of marine mammal by-catch in fisheries in East Malaysia. *Journal of the Marine Biological Association of the United Kingdom*, 89(5), 907-920.
- Jefferson, T. A. (2000). Population biology of the Indo-Pacific hump-backed dolphin in Hong Kong waters. *Wildlife monographs*, 1-65.
- Jefferson, T. A., & Karczmarski, L. (2001). Sousa chinensis. Mammalian species, 2001(655), 1-9.
- Jefferson, T. A., & Rosenbaum, H. C. (2014). Taxonomic revision of the humpback dolphins (*Sousa* spp.), and description of a new species from Australia. *Marine Mammal Science*, 30(4), 1494-1541.
- Jefferson, T. A., Hung, S. K., & Lam, P. K. (2006). Strandings, mortality and morbidity of Indo-Pacific humpback dolphins in Hong Kong, with emphasis on the role of organochlorine contaminants. *Journal of Cetacean research and Management*, 8(2), 181-193.
- Jefferson, T. A., Hung, S. K., & Würsig, B. (2009). Protecting small cetaceans from coastal development: Impact assessment and mitigation experience in Hong Kong. *Marine Policy*, 33(2), 305-311.
- Minh, T. B., Watanabe, M., Nakata, H., Tanabe, S., & Jefferson, T. A. (1999). Contamination by persistent organochlorines in small cetaceans from Hong Kong coastal waters. *Marine Pollution Bulletin*, 39(1-12), 383-392.
- Parra, G. J., & Jefferson, T. A. (2018). Humpback dolphins: *Sousa teuszii*, *S. plumbea*, *S. chinensis* and *S. sahulensis*. In *Encyclopedia of marine mammals* (pp. 483-489). Academic Press.
- Parsons, E. C. M. (2004). The potential impacts of pollution on humpback dolphins, with a case study on the Hong Kong population. *Aquatic Mammals*, 30(1), 18-37.
- Parsons, E. C. M., & Chan, H. M. (1998, October). Organochlorines in Indo-Pacific hump-backed dolphins (Sousa chinensis) and finless porpoises (Neophocaena phocaenoides) from Hong Kong. In The Marine Biology of the South China Sea. Proceedings of the Third International Conference on the Marine Biology of the South China Sea, Hong Kong (Vol. 28, pp. 423-438).
- Parsons, E. C. M., & Jefferson, T. A. (2000). Post-mortem investigations on stranded dolphins and porpoises from Hong Kong waters. *Journal of Wildlife Diseases*, *36*(2), 342-356.
- Piwetz, S., Hung, S., Wang, J., Lundquist, D., & Würsig, B. (2012). Influence of Vessel Traffic on Movements of Indo-Pacific Humpback Dolphins (*Sousa chinensis*) Off Lantau Island, Hong Kong. *Aquatic Mammals*, 38(3).
- Ross, G. J. B., Heinsohn, G. E., & Cockcroft, V. G. (1994). Humpback dolphins *Sousa chinensis* (Osbeck, 1765), *Sousa plumbea* (G. Cuvier, 1829) and *Sousa teuszii* (Kukenthal, 1892). *Handbook of marine mammals*, 5, 23-42.
- Sims, P. Q., Hung, S. K., & Würsig, B. (2012). High-speed vessel noises in West Hong Kong waters and their contributions relative to Indo-Pacific humpback dolphins (*Sousa chinensis*). *Journal of Marine Sciences*, 2012(1), 169103.
- Slooten, E., Wang, J. Y., Dungan, S. Z., Forney, K. A., Hung, S. K., Jefferson, T. A., Riehl, K.N., Rojas-Bracho, L., Ross, P. S., Wee, A., Winkler, R., Yang, S. C., & Chen, C. A. (2013). Impacts of fisheries on the Critically Endangered humpback dolphin *Sousa chinensis* population in the eastern Taiwan Strait. *Endangered Species Research*, 22(2), 99-114.
- Smith, B. D., Mansur, R. M., Strindberg, S., Redfern, J., & Moore, T. (2015). Population demographics, habitat selection, and a spatial and photographic analysis of bycatch risk of Indo-Pacific humpback dolphins *Sousa chinensis* and bottlenose dolphins *Tursiops aduncus* in the northern Bay of Bengal, Bangladesh. *SC*/66a/SM/19.
- Würsig, B., Greene Jr, C. R., & Jefferson, T. A. (2000). Development of an air bubble curtain to reduce underwater noise of percussive piling. *Marine environmental research*, 49(1), 79-93.

Pantropical Spotted Dolphin

- Amir, O. A., Berggren, P., & Jiddawi, N. S. (2002). The incidental catch of dolphins in gillnet fisheries in Zanzibar, Tanzania. *Journal of Marine Science* 1: 155-162.
- Andrianarivelo, N. (2001). Essai d'évaluation de l'importance de la pêche aux dauphins dans la région d'Anakao (sud-ouest de Madagascar). *Unpublished DEA thesis. Institut Halieutique et des Sciences Marines (IHSM), Université de Toliara, Madagascar*.
- Archer, F., Gerrodette, T., Dizon, A., Abella, K., & Southern, Š. Á. R. K. A. (2001). Unobserved kill of nursing dolphin calves in a tuna purse-seine fishery. *Marine Mammal Science*, *17*(3), 540-554.
- Baird, R. W., Webster, D. L., Aschettino, J. M., Schorr, G. S., & McSweeney, D. J. (2013). Odontocete cetaceans around the main Hawaiian Islands: Habitat use and relative abundance from small-boat sighting surveys. *Aquatic Mammals*, 39(3).
- Ballance, L. T., & Pitman, R. L. (1998). Cetaceans of the western tropical Indian Ocean: distribution, relative abundance, and comparisons with cetacean communities of two other tropical ecosystems. *Marine Mammal Science*, *14*(3), 429-459.
- Committee on Taxonomy. (2021). List of marine mammal species and subspecies. *Society for Marine Mammalogy*. https://www.marinemammalscience.org/species-information/list-marine-mammal-species-subspecies/. Accessed date: 10 January 2025
- Courtin, B., Millon, C., Feunteun, A., Safi, M., Duporge, N., Bolanos-Jiménez, J., Barragán-Barrera, D. C., Bouveret, L., & de Montgolfier, B. (2022). Insights on the residency status and inter-island movement patterns of pantropical spotted dolphins *Stenella attenuata* in the Agoa Sanctuary, Eastern Caribbean. *Latin American Journal of Aquatic Mammals*, 17(1), 22-34.
- Courtin, B., Millon, C., Feunteun, A., Safi, M., Duporge, N., Bolaños-Jiménez, J., Barragán-Barrera, D. C., Bouveret, L., & de Montgolfier, B. (2023). Site fidelity and population parameters of pantropical spotted dolphins in the Eastern Caribbean through photographic identification. *Frontiers in Marine Science*, 10, 939263.
- Dolar, M. L. L. (1994). Incidental takes of small cetaceans in fisheries in Palawan, central Visayas and northern Mindanao in the Philippines. *Report of the International Whaling Commission*, *15*, 355-363.
- Dolar, M. L. L., Leatherwood, S., Wood, C. J., Alava, M. N. R., Hill, C. L., & Aragones, L. V. (1994). Directed fisheries for cetaceans in the Philippines. *Reports of the International Whaling Commission*, 44, 439-449.
- Escalle, L., Capietto, A., Chavance, P., Dubroca, L., De Molina, A. D., Murua, H., Gaertner, D., Romanov, E., Spitz, J., Kiszka, J. J., Floch, L., Damiano, A., & Merigot, B. (2015). Cetaceans and tuna purse seine fisheries in the Atlantic and Indian Oceans: interactions but few mortalities. *Marine Ecology Progress Series*, 522, 255-268.
- Fish, F. E., Nicastro, A. J., & Weihs, D. (2006). Dynamics of the aerial maneuvers of spinner dolphins. *Journal of Experimental Biology*, 209(4), 590-598.
- Gannier, A. (2002). Cetaceans of the Marqueses Islands (French Polynesia): distribution and relative abundance as obtained from a small boat dedicated survey. *Aquatic Mammals*, 28(2), 198-210.
- Gerrodette, T., & Forcada, J. (2005). Non-recovery of two spotted and spinner dolphin populations in the eastern tropical Pacific Ocean. *Marine Ecology Progress Series*, 291, 1-21.
- Gerrodette, T., Watters, G., Perryman, W. and Balance, L. (2008). Estimates of 2006 dolphin abundance in the eastern tropical Pacific, with revised estimates from 1986-2003.
- Gopal, B. M. (2023, July). 'FSI surveys reveal sizeable number of dolphins on the East Coast along Indian EEZ'. *The Hindu*, https://www.thehindu.com/sci-tech/energy-and-environment/andhra-pradesh-fsi-surveys-reveal-sizable-number-of-dolphins-on-the-east-coast-along-indian-eez/article67123718.ece.
- Inter-American Tropical Tuna Commission. (IATTC). (2017). Report on the International Dolphin Conservation Program. 36th Meeting of the Parties to the Agreement on the International Dolphin Conservation Program Document, La Jolla, California. Document Number: MOP-36-05.

- Jefferson, T. A., Webber, M. A., & Pitman, R. L. (2011). *Marine mammals of the world: a comprehensive guide to their identification*. Elsevier.
- Kasuya, T. (2017). Small cetaceans of Japan: exploitation and biology. CRC Press.
- Kiszka, J., Perrin, W. F., Pusineri, C., & Ridoux, V. (2011b). What drives island-associated tropical dolphins to form mixed-species associations in the southwest Indian Ocean?. *Journal of Mammalogy*, 92(5), 1105-1111.
- Kiszka, J., Simon-Bouhet, B., Martinez, L., Pusineri, C., Richard, P., & Ridoux, V. (2011a). Ecological niche segregation within a community of sympatric dolphins around a tropical island. *Marine Ecology Progress Series*, 433, 273-288.
- Notarbartolo di Sciara, G., Kerem, D., Smeenk, C., Rudolph, P., Cesario, A., Costa, M., Elasar, M., Feingold, D., Fumagalli, M., Goffman, O., Hadar, N., Mebrathu, Y.T., & Scheinin, A. (2017). Cetaceans of the red sea. *CMS technical series*, *33*, 86.
- Oremus, M., Leqata, J., & Baker, C. S. (2015). Resumption of traditional drive hunting of dolphins in the Solomon Islands in 2013. *Royal Society Open Science*, 2(5), 140524.
- Palacios, D. M., & Gerrodette, T. (1996). Potential impact of artisanal gillnet fisheries on small cetacean populations in the eastern tropical Pacific. Southwest Fisheries Science Center Administrative Report LJ-96-11, La Jolla, California. 15pp.
- Pantropical Spotted Dolphin. NOAA Fisheries. https://www.fisheries.noaa.gov/species/pantropical-spotted-dolphin. Accessed on 03 March 2025.
- Pantropical Spotted Dolphin. WDC. https://uk.whales.org/whales-dolphins/species-guide/pantropical-spotted-dolphin/. Accessed on 03 March 2025.
- Pantropical Spotted Dolphin: NOAA Fisheries. https://www.fisheries.noaa.gov/species/pantropical-spotted-dolphin. Accessed on 03 March 2025.
- Perrin, W. F. (2009). Pantropical spotted dolphin: *Stenella attenuata*. In *Encyclopedia of marine mammals* (pp. 819-821). Academic Press.
- Perrin, W. F. 2001. Stenella attenuata. Mammalian Species 683: 1-8.
- Robertson, K. M., & Chivers, S. J. (1998). Prey occurrence in pantropical spotted dolphins, *Stenella attenuata*, from the eastern tropical Pacific. *Oceanographic Literature Review*, 1(45), 125.
- Ross, G., Gulland, F., Gales, N., Brownell Jr, R., & Reeves, R. (2003). Report of a fact-finding visit to the Solomon Islands. *IUCN/SSC Cetacean and Veterinary Specialist Groups*.
- Sathasivam, K. (2000). A catalogue of Indian marine mammal records. *Blackbuck*, 16(2&3), 74pp.
- Scott, M. D., & Cattanach, K. L. (1998). Diel patterns in aggregations of pelagic dolphins and tunas in the eastern Pacific. *Marine Mammal Science*, *14*(3), 401-422.
- Scott, M. D., Chivers, S. J., Olson, R. J., Fiedler, P. C., & Holland, K. (2012). Pelagic predator associations: tuna and dolphins in the eastern tropical Pacific Ocean. *Marine Ecology Progress Series*, *458*, 283-302.
- Spotted Dolphin. IWC. https://iwc.int/about-whales/whale-species/spotted-dolphin. Accessed on 03 March 2025.
- Wade, P. R. (1996). Revised estimates of incidental kill of dolphins (Delphinidae) by the purse-seine tuna fishery in the eastern tropical Pacific, 1959-1972. *Oceanographic Literature Review*, 1(43), 69.
- Yang, S. C., Liao, H. C., Pan, C. L., & Wang, J. Y. (2000). A survey of cetaceans in the waters of central-eastern Taiwan. *Asian Marine Biology* 16 (1999), 16, 23-34.

- 'Dolphin population rises in Gahirmatha sanctuary, Odisha'. (2023, January). *The New Indian Express*. https://www.newindianexpress.com/states/odisha/2023/Jan/06/dolphin-population-rises-in-gahirmatha-sanctuary-odisha-2535269.html.
- 'Injured dolphin rescued by fishers, forest officials in Ramanathapuram'. (2024, April). *The New Indian Express*.

 https://www.newindianexpress.com/states/tamil-nadu/2024/Apr/21/injured-dolphin-rescued-by-fishers-fo rest-officials-in-ramanathapuram.
- Aguilar, A., & Borrell, A. (1994). Abnormally high polychlorinated biphenyl levels in striped dolphins (*Stenella coeruleoalba*) affected by the 1990–1992 Mediterranean epizootic. *Science of the Total Environment*, 154(2-3), 237-247.
- Aguilar, A., & Gaspari, S. (2006). Striped dolphin, Stenella coeruleoalba—Mediterranean subpopulation. The status and distribution of cetaceans in the Black Sea and Mediterranean Sea. IUCN Centre for Mediterranean Cooperation, Málaga, Spain, 57-63.
- Alling, A. (1986). Records of odontocetes in the northern Indian Ocean (1981-1982) and off the coast of Sri Lanka (1982-1984). *Journal of the Bombay Natural History Society. Bombay*, 83(2), 376-394.
- Archer II, F. I. (2018). Striped dolphin: *Stenella coeruleoalba*. In *Encyclopedia of marine mammals* (pp. 954-956). Academic Press.
- Archer, F. I., & Perrin, W. F. (1999). Stenella coeruleoalba. Mammalian Species, (603), 1-9.
- Bearzi, G., Bonizzoni, S., Santostasi, N. L., Furey, N. B., Eddy, L., Valavanis, V. D., & Gimenez, O. (2016). Dolphins in a scaled-down Mediterranean: the Gulf of Corinth's odontocetes. In *Advances in Marine Biology* (Vol. 75, pp. 297-331). Academic Press.
- Cardellicchio, N., Giandomenico, S., Ragone, P., & Di Leo, A. (2000). Tissue distribution of metals in striped dolphins (*Stenella coeruleoalba*) from the Apulian coasts, Southern Italy. *Marine Environmental Research*, 49(1), 55-66.
- Di Natale A. (1992). L'impatto delle attività di pesca ai grandi pelagici sui cetacei. *Boll. Mus. Ist. Biol. Univ. Genova* 56-57:87-112.
- Domingo, M., Vilafranca, M., Visa, J., Prats, N., Trudgett, A., & Visser, I. (1995). Evidence for chronic morbillivirus infection in the Mediterranean striped dolphin (*Stenella coeruleoalba*). *Veterinary Microbiology*, 44(2-4), 229-239.
- Forcada, J., & Hammond, P. (1998). Geographical variation in abundance of striped and common dolphins of the western Mediterranean. *Journal of sea research*, 39(3-4), 313-325.
- Hammond, P. S., Lacey, C., Gilles, A., Viquerat, S., Boerjesson, P., Herr, H., Macleod, K., Ridoux, V., Santos, M. B., Scheidat, M., Teilmann, J., Vingada, J., & Øien, N. (2017). Estimates of cetacean abundance in European Atlantic waters in summer 2016 from the SCANS-III aerial and shipboard surveys. Wageningen Marine Research.
- Hobbs, R. C., & Jones, L. L. (1993). Impacts of high seas driftnet fisheries on marine mammal populations in the North Pacific. *Bull Int North Pac Fish Comm*, 53, 409-434.
- Ilangakoon, A. D., Miththapala, S., & Ratnasooriya, W. D. (2000a). Sex ratio and size range of small cetaceans in the fisheries catch on the west coast of Sri Lanka.
- Ilangakoon, A. D., Ratnasooriya, W. D., & Miththapala, S. (2000b). Species Diversity, Seasonal Variation and Capture Method of Small Cetaceans on the West Coast of Sri Lanka.
- Jefferson, T. A., Webber, M. A., & Pitman, R. L. (2011). Marine mammals of the world: a comprehensive guide to their identification. Elsevier.
- Jepson, P. D., Deaville, R., Barber, J. L., Aguilar, À., Borrell, A., Murphy, S., Barry, J., Brownlow, A., Barnett,
 J., Berrow, S., Cunningham, A. A., Davison, N. J., ten Doeschate, M., Esteban, R., Ferreira, M., Foote, A.
 D., Genov, T., Giménez, J., Loveridge, J., Llavona, Á., Martin, V., Maxwell, D. L., Papachlimitzou, A.,
 Penrose, R., Perkins, M. W., Smith, B., de Stephanis, R., Tregenza, N., Verborgh, P., Fernandez, A., &

- Law, R. J. (2016). PCB pollution continues to impact populations of orcas and other dolphins in European waters. *Scientific reports*, 6(1), 1-17.
- Kasuya, T. (2017). Small cetaceans of Japan: exploitation and biology. CRC Press.
- Keck, N., Kwiatek, O., Dhermain, F., Dupraz, F., Boulet, H., Danés, C., Laprie, C., Perrin, A., Godenir, J., Micout, L., & Libeau, G. (2010). Resurgence of Morbillivirus infection in Mediterranean dolphins off the French coast. *The Veterinary record*, *166*(21), 654.
- Leatherwood, S., Caldwell, D. K., & Winn, H. E. (1976). Whales, dolphins, and porpoises of the western North Atlantic (Vol. 396). US Department of Commerce, National Oceanic and Atmospheric Administration, National Marine Fisheries Service.
- MacLeod, C. D., Bannon, S. M., Pierce, G. J., Schweder, C., Learmonth, J. A., Herman, J. S., & Reid, R. J. (2005). Climate change and the cetacean community of north-west Scotland. *Biological Conservation*, 124(4), 477-483.
- Marsili, L., Jiménez, B., & Borrell, A. (2018). Persistent organic pollutants in cetaceans living in a hotspot area: the Mediterranean Sea. In *Marine Mammal Ecotoxicology* (pp. 185-212). Academic Press.
- Notarbartolo Di Sciara, G., Venturino, M. C., Zanardelli, M., Bearzi, G., Borsani, F. J., & Cavalloni, B. (1993). Cetaceans in the central Mediterranean Sea: distribution and sighting frequencies. *Italian Journal of Zoology*, 60(1), 131-138.
- Oremus, M., Leqata, J., & Baker, C. S. (2015). Resumption of traditional drive hunting of dolphins in the Solomon Islands in 2013. *Royal Society Open Science*, 2(5), 140524.
- Panigada, S., Boisseau, O., Canadas, A., Lambert, C., Laran, S., McLanaghan, R., & Moscrop, A. (2021). Estimates of abundance and distribution of cetaceans, marine mega-fauna and marine litter in the Mediterranean Sea from 2018-2019 surveys. *Accobams Surv. Initiat. Rep, 179*.
- Ross, G. J. (1984). The smaller cetaceans of the south east coast of southern Africa. *Annals of the Cape Provincial Museums*, 15, 173-410.
- Saavedra, C., García-Polo, M., Giménez, J., Mons, J. L., Castillo, J. J., Fernández-Maldonado, C., de Stephanis, R., Pierce, G. J., & Santos, M. B. (2022). Diet of striped dolphins (*Stenella coeruleoalba*) in southern Spanish waters. *Marine Mammal Science*, *38*(4), 1566-1582.
- Santos, M. B., Pierce, G. J., Learmonth, J. A., Reid, R. J., Sacau, M., Patterson, I. A. P., & Ross, H. M. (2008). Strandings of striped dolphin *Stenella coeruleoalba* in Scottish waters (1992–2003) with notes on the diet of this species. *Journal of the Marine Biological Association of the United Kingdom*, 88(6), 1175-1183.
- Storelli, M. M., Barone, G., Giacominelli-Stuffler, R., & Marcotrigiano, G. O. (2012). Contamination by polychlorinated biphenyls (PCBs) in striped dolphins (*Stenella coeruleoalba*) from the Southeastern Mediterranean Sea. *Environmental monitoring and assessment*, 184, 5797-5805.
- Striped Dolphin. IWC. https://iwc.int/about-whales/whale-species/striped-dolphin. Accessed on 04 March 2025.
- Striped Dolphin. NOAA Fisheries. https://www.fisheries.noaa.gov/species/striped-dolphin. Accessed on 04 March 2025.
- Striped Dolphin. ORCA Ireland. https://www.orcaireland.org/striped-dolphin. Accessed on 04 March 2025.
- Tanabe, S., Mori, T., Tatsukawa, R., & Miyazaki, N. (1983). Global pollution of marine mammals by PCBs, DDTs and HCHs (BHCs). *Chemosphere*, *12*(9-10), 1269-1275.
- Tudela, S., Kai, A. K., Maynou, F., El Andalossi, M., & Guglielmi, P. (2005). Driftnet fishing and biodiversity conservation: the case study of the large-scale Moroccan driftnet fleet operating in the Alboran Sea (SW Mediterranean). *Biological Conservation*, 121(1), 65-78.
- Würtz, M., & Marrale, D. (1993). Food of striped dolphin, *Stenella coeruleoalba*, in the Ligurian Sea. *Journal of the Marine Biological Association of the United Kingdom*, 73(3), 571-578.

Spinner Dolphin

- Anderson, R. C. (2014). Cetaceans and tuna fisheries in the Western and Central Indian Ocean. *International pole and line federation technical report*, 2, 133.
- Au, D. W. K., & Perryman, W. L. (1989). Dolphin habitats in the eastern tropical Pacific. *Collected Reprints*, 1(4), 14.
- Ballance, L. T., & Pitman, R. L. (1998). Cetaceans of the western tropical Indian Ocean: distribution, relative abundance, and comparisons with cetacean communities of two other tropical ecosystems. *Marine Mammal Science*, 14(3), 429-459.
- Brownlee, S. M., & Norris, K. S. (1994). "The Acoustic Domain". In Norris, K. S., Wursig, B., Wells, R. S., & Wursig, M. (eds.). *The Hawaiian Spinner Dolphin*. University of California Press. pp. 161–185.
- Cerchio, S., Gruden, P., Andrianarivelo, N., and Strindberg, S. (2011). Assessment of cetacean diversity, distribution, and population status on the West Coast of Madagascar and Mozambique Channel. Final Report to the Kate Sanderson Bequest to the International Union for Conservation of Nature, Species Survival Commission, Gland, Switzerland.
- Dolar, M. L. L. (1994). Incidental takes of small cetaceans in fisheries in Palawan, central Visayas and northern Mindanao in the Philippines. *Report of the International Whaling Commission*, *15*, 355-363.
- Dolar, M. L. L., Walker, W. A., Kooyman, G. L., & Perrin, W. F. (2003). Comparative feeding ecology of spinner dolphins (*Stenella longirostris*) and Fraser's dolphins (*Lagenodelphis hosei*) in the Sulu Sea. *Marine Mammal Science*, 19(1), 1-19.
- Donahue, M. A., & Edwards, E. F. (1996). An annotated bibliography of available literature regarding cetacean interactions with tuna purse-seine fisheries outside of the eastern tropical Pacific Ocean. Administrative Report LJ-96-20. *NOAA*.
- Gannier, A., & Petiau, E. (2006). Environmental variables affecting the residence of spinner dolphins (*Stenella longirostris*) in a bay of Tahiti (French Polynesia). *Aquatic Mammals*, 32(2), 202.
- Gerrodette, T. (2009). The tuna-dolphin issue. In *Encyclopedia of marine mammals* (pp. 1192-1195). Academic Press.
- Jefferson, T. A., Leatherwood, S., & Webber, M. A. (1993). *Marine mammals of the world*. Food & Agriculture Org
- Kahn, B. (2004). Indonesia Oceanic Cetacean Program Activity Report: October–December 2003. *Apex Environmental, TNC Indonesia*.
- Newport, Keny. (2023). Man-Made Threats to Spinner Dolphins (*Stenella Longirostris*) in the Tamil Nadu Coast, India. *JVMS*, *5*(1), 194-196.
- Kiszka, J., Muir, C., Poonian, C., Cox, T. M., Amir, O. A., Bourjea, J., Razafindrakoto, Y., Wambiji, N., & Bristol, N. (2009). Marine mammal bycatch in the southwest Indian Ocean: review and need for a comprehensive status assessment. *Western Indian Ocean Journal of Marine Science*, 7(2), 119-136.
- Leatherwood, S., & Reeves, R. R. (1989). Marine mammal research and conservation in Sri Lanka, 1985-1986 (No. 1).
- Mohan, L.R.S. (1994). Review of gillnet fisheries and cetacean bycatches in the northeastern Indian Ocean. In: Perrin, W. F., Donovan, G. P., & Barlow, J. (eds), *Gillnets and Cetaceans: incorporating the proceedings of the symposium and workshop on the mortality of cetaceans in passive fishing nets and traps*, pp. 329-343. International Whaling Commission, Cambridge, UK.
- Norris, K. S., Wursig, B., Wells, R. S., & Wursig, M. (1994). *The Hawaiian spinner dolphin*. University of California Press.
- Notarbartolo di Sciara, G., Kerem, D., Smeenk, C., Rudolph, P., Cesario, A., Costa, M., Elasar, M., Feingold, D., Fumagalli, M., Goffman, O., Hadar, N., Mebrathu, Y.T., & Scheinin, A. (2017). Cetaceans of the red sea. *CMS technical series*, *33*, 86.

- Oremus, M., Leqata, J., & Baker, C. S. (2015). Resumption of traditional drive hunting of dolphins in the Solomon Islands in 2013. *Royal Society Open Science*, 2(5), 140524.
- Perrin, W. F. (2009). Spinner dolphin: *Stenella longirostris*. In *Encyclopedia of marine mammals* (pp. 1100-1103). Academic Press.
- Perrin, W. F., & Gilpatrick, J. W. (1994). Spinner dolphin *Stenella longirostris* (Gray, 1828). In: Ridgway, S. H., & R. Harrison (eds), Handbook of marine mammals, Volume 5: The first book of dolphins, pp. 99-128. Academic Press.
- Perrin, W. F., Dolar, M. L. L., & Robineau, D. (1999). Spinner Dolphins (*Stenella longirostris*) of the Western Pacific and Southeast Asia: Pelagic and Shallow-water Forms¹. *Marine Mammal Science*, 15(4), 1029-1053.
- Perrin, W. F., Miyazaki, N., & Kasuya, T. (1989). A dwarf form of the spinner dolphin (*Stenella longirostris*) from Thailand. *Marine Mammal Science*, 5(3), 213-227.
- Perrin, W.F. (2018). Spinner dolphin *Stenella longirostris*. In: Wursig, B., Thewissen, J. G. M., & Kovacs, K.M. (eds), *Encyclopedia of Marine Mammals Third Edition*, pp. 925-928. Academic Press.
- Reilly, S. B. (2005). Report of the scientific research program under the International Dolphin Conservation Program Act. NOAA Technical Memorandum NMFS.
- Rice, D. W. (1998). Marine mammals of the world, systematics and distribution. *Society for Marine Mammalogy Special Publication*, 4, 1-231.
- Robards, M. D., & Reeves, R. R. (2011). The global extent and character of marine mammal consumption by humans: 1970–2009. *Biological Conservation*, 144(12), 2770-2786.
- Sathasivam, K. (2000). A catalogue of Indian marine mammal records. *Blackbuck*, 16(2&3), 74pp.
- Spinner Dolphin. IWC. https://iwc.int/about-whales/whale-species/spinner-dolphin. Accessed on 04 March 2025.
- Spinner Dolphin. NOAA Fisheries. https://www.fisheries.noaa.gov/species/spinner-dolphin. Accessed on 28 January 2025.
- Spinner Dolphin. WDC. https://uk.whales.org/whales-dolphins/species-guide/spinner-dolphin/. Accessed on 04 March 2025.
- Stenella longirostris: Marine Mammal Research and Conservation Network of India (MMRCNI). https://www.marinemammals.in/mmi/identification-guide/character-matrix-1/long-snouted-spinner-dolphi <a href="https://www.marinemammals.in/mmi/identification-guide/character-matrix-mi/identification-guide/character-matrix-mi/identification-guide/character-matrix-mi/identification-guide/character-matrix-mi/identification-guide/c
- Tyne, J. A., Johnston, D. W., Christiansen, F., & Bejder, L. (2017). Temporally and spatially partitioned behaviours of spinner dolphins: implications for resilience to human disturbance. *Royal Society Open Science*, 4(1), 160626.
- Tyne, J. A., Johnston, D. W., Rankin, R., Loneragan, N. R., & Bejder, L. (2015). The importance of spinner dolphin (*Stenella longirostris*) resting habitat: implications for management. *Journal of Applied Ecology*, 52(3), 621-630.
- Van Waerebeek, K., Gallagher, M., Baldwin, R., Papastavrou, V., & Al-Lawati, S. M. (1999). Morphology and distribution of the spinner dolphin, *Stenella longirostris*, rough-toothed dolphin, *Steno bredanensis* and melon-headed whale, *Peponocephala electra*, from waters off the Sultanate of Oman. *J. Cetacean Res. Manage.*, *I*(2), 167-177.
- Wade, P. R., Watters, G. M., Gerrodette, T., & Reilly, S. B. (2007). Depletion of spotted and spinner dolphins in the eastern tropical Pacific: modeling hypotheses for their lack of recovery. *Marine Ecology Progress Series*, 343, 1-14.

Rough-toothed Dolphin

- 'Rough-toothed dolphins sighted first time ever in Indian waters'. (2022, March). *The Hindu*. https://www.thehindu.com/news/national/kerala/rough-toothed-dolphins-sighted-first-time-ever-in-indian-waters/article65255972.ece
- Anoop, B., Yousuf, K. S. S. M., Sreeram, M. P., Vaidya, N. G., Dinesh, C. K., & Vivekanandan, E. (2015). Record of the rough toothed dolphin *Steno bredanensis* (G. Cuvier in Lesson, 1828) in Indian seas after 19th century. *Indian Journal of Fisheries*, 62(4), 91-98.
- Baird, R. W. (2016). The lives of Hawai 'i's dolphins and whales: natural history and conservation. University of Hawaii press.
- Bradford, A. L., & Forney, K. A. (2014). Injury determinations for cetaceans observed interacting with Hawaii and American Samoa longline fisheries during 2007-2011.
- Caldwell, D. K., & Caldwell, M. C. (1975). Dolphin and small whale fisheries of the Caribbean and West Indies: occurrence, history, and catch statistics—with special reference to the Lesser Antillean Island of St. Vincent. *Journal of the Fisheries Board of Canada*, 32(7), 1105-1110.
- Carrillo, M., Pérez-Vallazza, C., & Álvarez-Vázquez, R. (2010). Cetacean diversity and distribution off Tenerife (Canary Islands). *Marine Biodiversity Records*, *3*, e97.
- Debrah, J. S., Ofori-Danson, P. K., & Van Waerebeek, K. (2010). An update on the catch composition and other aspects of cetacean exploitation in Ghana. *Scientific Committee Document SC/62/SM10, International Whaling Commission*.
- Freitas, L., Dinis, A., Nicolau, C., Ribeiro, C., & Alves, F. (2012). New records of cetacean species for Madeira Archipelago with an updated checklist.
- Gannier, A., & West, K. L. (2005). Distribution of the rough-toothed dolphin (*Steno bredanensis*) around the Windward Islands (French Polynesia) 1. *Pacific Science*, 59(1), 17-24.
- Hayes, S.A., Josephson, E., Maze-Foley, K, and Rosel, P.E. (eds). (2017). US Atlantic and Gulf of Mexico Marine Mammal Stock Assessments 2016. National Oceanic and Atmospheric Administration Technical Memorandum NMFS-NE-241.
- Jefferson, T. A. (2009). Rough-toothed dolphin: *Steno bredanensis*. In *Encyclopedia of marine mammals* (pp. 990-992). Academic Press.
- Kasuya, T. (2018). Japanese Whaling. In Encyclopedia of Marine Mammals (pp. 1066-1070). Academic Press.
- Kerem, D., Goffman, O., Elasar, M., Hadar, N., Scheinin, A., & Lewis, T. (2016). The Rough-Toothed Dolphin, Steno bredanensis, in the Eastern Mediterranean Sea: A Relict Population?. Advances in Marine Biology, 75, 233-258.
- Kiszka, J., Baird, R., & Braulik, G. 2019. *Steno bredanensis* (errata version published in 2020). *The IUCN Red List of Threatened Species* 2019: e.T20738A178929751. Accessed on 08 February 2025.
- Marsili, L., & Focardi, S. (1997). Chlorinated hydrocarbon (HCB, DDTs and PCBs levels in cetaceans stranded along the Italian coasts: an overview. *Environmental Monitoring and Assessment*, 45, 129-180.
- Mintzer, V. J., Diniz, K., & Frazer, T. K. (2018). The use of aquatic mammals for bait in global fisheries. *Frontiers in Marine Science*, *5*, 191.
- Miyazaki, N., & Perrin, W. F. (1994). Rough-toothed dolphin *Steno bredanensis* (Lesson, 1828). *Handbook of marine mammals*, 5, 1-21.
- Monteiro-Neto, C., Alves-Júnior, T. T., Avila, F. C., Campos, A. A., Costa, A. F., Silva, C. N., & Furtado-Neto, M. A. A. (2000). Impact of fisheries on the tucuxi (Sotalia fluviatilis) and rough-toothed dolphin (*Steno bredanensis*) populations off Ceará state, northeastern Brazil. *Aquatic Mammals*, 26(1), 49-56.
- Notarbartolo di Sciara, G., Kerem, D., Smeenk, C., Rudolph, P., Cesario, A., Costa, M., Elasar, M., Feingold, D., Fumagalli, M., Goffman, O., Hadar, N., Mebrathu, Y.T., & Scheinin, A. (2017). Cetaceans of the red sea. *CMS technical series*, *33*, 86.

- Oremus, M., Poole, M. M., Albertson, G. R., & Baker, C. S. (2012). Pelagic or insular? Genetic differentiation of rough-toothed dolphins in the Society Islands, French Polynesia. *Journal of Experimental Marine Biology and Ecology*, 432, 37-46.
- Perrin, W. F., Reeves, R. R., Dolar, M. L. L., Jefferson, T. A., Marsh, H., Wang, J. Y., & Estacion, J. (2005). Report of the Second Workshop on The Biology and Conservation of Small Cetaceans and Dugongs of South East Asia. W. F. Perrin, & R. R. Reeves (Eds.). UNEP-CMS.
- Pitman, R. L., & Stinchcomb, C. (2002). Rough-toothed dolphins (*Steno bredanensis*) as predators of mahimahi (*Coryphaena hippurus*). *Pacific Science*, 56(4), 447-450.
- Puig-Lozano, R., de Quirós, Y. B., Díaz-Delgado, J., García-Álvarez, N., Sierra, E., De la Fuente, J., Sacchini, S., Suárez-Santana, C. M., Zucca, D., Câmara, N., Saavedra, P., Almunia, J., Rivero, M. A., Fernández, A., & Arbelo, M. (2018). Retrospective study of foreign body-associated pathology in stranded cetaceans, Canary Islands (2000–2015). *Environmental Pollution*, 243, 519-527.
- Ritter, F. (2002). Behavioural observations of rough-toothed dolphins (*Steno bredanensis*) off La Gomera, Canary Islands (1995-2000), with special reference to their interactions with humans. *Aquatic Mammals*, 28(1), 46-59.
- Rough-toothed Dolphin. NOAA Fisheries. https://www.fisheries.noaa.gov/species/rough-toothed-dolphin. Accessed on 04 March 2025.
- Rough-toothed Dolphin. WDC. https://uk.whales.org/whales-dolphins/species-guide/rough-toothed-dolphin/. Accessed on 04 March 2025.
- Shoham-Frider, E., Kerem, D., Roditi-Elasar, M., Goffman, O., Morick, D., Yoffe, O., & Kress, N. (2014). Trace elements in tissues of cetacean species rarely stranded along the Israeli Mediterranean coast. *Marine pollution bulletin*, 83(1), 376-382.
- Sightings and Standings Database. Marine Mammal Research & Conservation Network of India (MMRCNI). https://www.marinemammals.in/database/sightings-and-strandings/
- Van Waerebeek, K., Ofori-Danson, P. K., & Debrah, J. (2009). The cetaceans of Ghana, a validated faunal checklist. *West African Journal of Applied Ecology*, 15(1).
- Watkins, W. A., Tyack, P., Moore, K. E., & Notarbartolo-di-Sciara, G. (1987). *Steno bredanensis* in the Mediterranean Sea. *Marine Mammal Science*, 3(1), 78-82.
- West, K. L., Mead, J. G., & White, W. (2011). Steno bredanensis (Cetacea: Delphinidae). Mammalian Species, 43(886), 177-189.

Indo-Pacific Bottlenose Dolphin

- Amir, O. A. (2010). Biology, ecology and anthropogenic threats of Indo-Pacific bottlenose dolphins in east Africa (Doctoral dissertation, Department of Zoology, Stockholm University).
- Amir, O. A., Berggren, P., Ndaro, S. G., & Jiddawi, N. S. (2005). Feeding ecology of the Indo-Pacific bottlenose dolphin (*Tursiops aduncus*) incidentally caught in the gillnet fisheries off Zanzibar, Tanzania. *Estuarine, Coastal and Shelf Science*, 63(3), 429-437.
- Andersen, R. C., Sattar, S. A., & Adam, M. S. (2012). Cetaceans in the Maldives: a review. *J. Cetacean Res. Manage.*, 12(2), 219-225.
- Andrianarivelo, N. (2001). Essai d'évaluation de l'importance de la pêche aux dauphins dans la région d'Anakao (sud-ouest de Madagascar). *Unpublished DEA thesis. Institut Halieutique et des Sciences Marines (IHSM), Université de Toliara, Madagascar*.
- Borsa, P. (2006). Marine mammal strandings in the New Caledonia region, Southwest Pacific. *Comptes rendus. Biologies*, 329(4), 277-288.
- Bottlenose Dolphin. IWC. https://iwc.int/about-whales/whale-species/bottlenose-dolphin. Accessed on 04 March 2025.

- Dirtu, A. C., Malarvannan, G., Das, K., Dulau-Drouot, V., Kiszka, J. J., Lepoint, G., Mongin, P., & Covaci, A. (2016). Contrasted accumulation patterns of persistent organic pollutants and mercury in sympatric tropical dolphins from the south-western Indian Ocean. *Environmental Research*, 146, 263-273.
- Dulau-Drouot, V., Boucaud, V., & Rota, B. (2008). Cetacean diversity off La Réunion Island (France). *Journal of the Marine Biological Association of the United Kingdom*, 88(6), 1263-1272.
- Gui, D., Karczmarski, L., Yu, R. Q., Plön, S., Chen, L., Tu, Q., Cliff, G., & Wu, Y. (2016). Profiling and spatial variation analysis of persistent organic pollutants in South African delphinids. *Environmental Science & Technology*, 50(7), 4008-4017.
- Hale, P. (1997). Conservation of inshore dolphins in Australia. Asian Marine Biology, 14, 83-91.
- Harwood, M. B., & Hembree, D. (1987). Incidental catch of small cetaceans in the offshore gillnet fishery in northern Australian waters: 1981-1985. *Reports of the International Whaling Commission* 37: 363-367.
- Indo-Pacific Bottlenose Dolphin. WDC. https://uk.whales.org/whales-dolphins/species-guide/indo-pacific-bottlenose-dolphin/. Accessed on 04 March 2025.
- Jefferson, T. A., & Curry, B. E. (2016). *Humpback dolphins (Sousa spp.): current status and conservation, Part* 2 (Vol. 73). Academic Press.
- Jefferson, T. A., Webber, M. A., & Pitman, R. L. (2011). *Marine mammals of the world: a comprehensive guide to their identification*. Elsevier.
- Kannan, K., Blankenship, A. L., Jones, P. D., & Giesy, J. P. (2000). Toxicity reference values for the toxic effects of polychlorinated biphenyls to aquatic mammals. *Human and Ecological Risk Assessment*, 6(1), 181-201.
- Kasuya, T. (2017). Small Cetaceans of Japan: Exploitation and Biology. CRC Press.
- Kemper, C. M., Tomo, I., Bingham, J., Bastianello, S. S., Wang, J., Gibbs, S. E., Woolford, L., Dickason, C., & Kelly, D. (2016). Morbillivirus-associated unusual mortality event in South Australian bottlenose dolphins is largest reported for the Southern Hemisphere. *Royal Society open science*, *3*(12), 160838.
- Kiszka, J. (2015). Marine mammals: a review of status, distribution and interaction with fisheries in the Southwest Indian Ocean. In: R.P. Van der Elst and B.I. Everett (eds), Offshore fisheries of the Southwest Indian Ocean: their status and the impact on vulnerable species. Oceanographic Research Institute, Special Publication 10, pp. 303-323.
- Kiszka, J., Simon-Bouhet, B., Gastebois, C., Pusineri, C., & Ridoux, V. (2012). Habitat partitioning and fine scale population structure among insular bottlenose dolphins (*Tursiops aduncus*) in a tropical lagoon. *Journal of Experimental Marine Biology and Ecology*, 416, 176-184.
- Kiszka, J., Vely, M., & Breysse, O. (2010). Preliminary account of cetacean diversity and humpback whale (*Megaptera novaeangliae*) group characteristics around the Union of the Comoros (Mozambique Channel).
- Koper, R. P., & Plön, S. (2016). Interspecific interactions between cetacean species in Algoa Bay, South Africa. *Aquatic Mammals*, 42(4), 454.
- Malakar, B., Venu, S., Ojha, C., Ram, B. S., Gogoi, N. K., Lakra, R. K., Basumatary, G., Thomas, L., & Nagesh, R. (2015). Recent sightings of marine mammals in Andaman Islands, India. *Journal of Threatened Taxa*, 7(5), 7175-7180.
- Mansur, R. M., Strindberg, S., & Smith, B. D. (2012). Mark-resight abundance and survival estimation of Indo-Pacific bottlenose dolphins, *Tursiops aduncus*, in the Swatch-of-No-Ground, Bangladesh. *Marine Mammal Science*, 28(3), 561-578.
- Mintzer, V. J., Diniz, K., & Frazer, T. K. (2018). The use of aquatic mammals for bait in global fisheries. *Frontiers in Marine Science*, *5*, 191.
- Möller, L. M., & Beheregaray, L. B. (2001). Coastal bottlenose dolphins from southeastern Australia are *Tursiops aduncus* according to sequences of the mitochondrial DNA control region. *Marine Mammal Science*, 17(2), 249-263.

- Mwevura, H., Amir, O. A., Kishimba, M., Berggren, P., & Kylin, H. (2010). Organohalogen compounds in blubber of Indo-Pacific bottlenose dolphin (*Tursiops aduncus*) and spinner dolphin (*Stenella longirostris*) from Zanzibar, Tanzania. *Environmental Pollution*, 158(6), 2200-2207.
- Oremus, M., Leqata, J., & Baker, C. S. (2015). Resumption of traditional drive hunting of dolphins in the Solomon Islands in 2013. *Royal Society Open Science*, 2(5), 140524.
- Oremus, M., Leqata, J., Hurutarau, J., Taei, S., Donoghue, M., & Baker, C. S. (2013). Population status of Indo-Pacific bottlenose dolphins, *Tursiops aduncus*, in the Solomon Islands and assessment of live-capture sustainability. *Report to the Scientific Committee of the International Whaling Commission SC/65a/Forinfo32*.
- Paterson, R. A. (1990). Effects of long-term anti-shark measures on target and non-target species in Queensland, Australia. *Biological Conservation*, *52*(2), 147-159.
- Reeves, R. R., & Brownell, R. L. (2009). Indo-Pacific bottlenose dolphin assessment workshop report: Solomon Islands case study of *Tursiops aduncus*. *Occasional paper of the IUCN Species Survival Commission* 40: 1-53
- Reeves, R. R., Stewart, B., Clapham, P., & Powell, J. (2002). *Guide to marine mammals of the world*. Knopf Doubleday Publishing. pp. 362–365.
- Ross, G. J. (1984). The smaller cetaceans of the south east coast of southern Africa. *Annals of the Cape Provincial Museums*, 15, 173-410.
- Shirakihara, M., & Shirakihara, K. (2012). Bycatch of the Indo-Pacific bottlenose dolphin (*Tursiops aduncus*) in gillnet fisheries off Amakusa-Shimoshima Island, Japan. *J. Cetacean Res. Manage.*, 12(3), 345-351.
- Shirihai, H., Jarrett, B., Kirwan, G. M., Cresswell, G., Macleod, K., Walker, D., & Dando, J. (2006). *Whales, dolphins, and other marine mammals of the world*. Princeton: Princeton Univ. Press. pp. 155–158.
- Sightings and Standings Database. Marine Mammal Research & Conservation Network of India (MMRCNI). https://www.marinemammals.in/database/sightings-and-strandings/
- Temple, A. J., Wambiji, N., Poonian, C. N., Jiddawi, N., Stead, S. M., Kiszka, J. J., & Berggren, P. (2019). Marine megafauna catch in southwestern Indian Ocean small-scale fisheries from landings data. *Biological Conservation*, 230, 113-121.
- Tun, T., Smith, B. D., Tun, M. T., & Han, N. M. (2006). Preliminary assessment of cetacean catches in coastal waters near Myeik and Dawei in southeastern Myanmar. In Report submitted to the Department of Fisheries, Myanmar, Wildlife Conservation Society and Convention on Migratory Species, (Myanmar: Department of Fisheries).
- Wang, J. Y., & Yang, S. C. (2009). Indo-Pacific bottlenose dolphin: *Tursiops aduncus*. In *Encyclopedia of marine mammals* (pp. 602-608). Academic Press.
- Webster, I., Cockcroft, V. G., & Cadinouche, A. (2014). Abundance of the Indo-Pacific bottlenose dolphin *Tursiops aduncus* off south-west Mauritius. *African Journal of Marine Science*, 36(3), 293-301.
- Wells, R. S., & Scott, M. D. (2002). Bottlenose dolphins. *Encyclopedia of Marine Mammals. Academic Press, San Diego, USA*, 122-127.
- Wild, S., Krützen, M., Rankin, R. W., Hoppitt, W. J., Gerber, L., & Allen, S. J. (2019). Long-term decline in survival and reproduction of dolphins following a marine heatwave. *Current Biology*, 29(7), R239-R240.
- Yamazaki, T., Oda, S. I., & Shirakihara, M. (2008). Stomach contents of an Indo-Pacific bottlenose dolphin stranded in Amakusa, western Kyushu, Japan. *Fisheries Science*, 74(5).
- Young, N. M., & Iudicello, S. (2007). Worldwide Bycatch of Cetaceans. U.S. Department of Commerce, NOAA Technical Memorandum NMFS-OPR-36.

Common Bottlenose Dolphin

- Aguilar, A., & Borrell, A. (1994). Abnormally high polychlorinated biphenyl levels in striped dolphins (*Stenella coeruleoalba*) affected by the 1990–1992 Mediterranean epizootic. *Science of the Total Environment*, 154(2-3), 237-247.
- Aguilar, A., Borrell, A., & Reijnders, P. J. H. (2002). Geographical and temporal variation in levels of organochlorine contaminants in marine mammals. *Marine environmental research*, 53(5), 425-452.
- Allen, M. C., & Read, A. J. (2000). Habitat selection of foraging bottlenose dolphins in relation to boat density near Clearwater, Florida. *Marine Mammal Science*, *16*(4), 815-824.
- Baldwin, R., Van Waerebeek, K., & Gallagher, M. (1998). A review of small cetaceans from waters off the Arabian Peninsula. *IWC SC/50/SM6*, 1-24.
- Bearzi, G., Agazzi, S., Bonizzoni, S., Costa, M., & Azzellino, A. (2008). Dolphins in a bottle: abundance, residency patterns and conservation of bottlenose dolphins *Tursiops truncatus* in the semi-closed eutrophic Amvrakikos Gulf, Greece. *Aquatic Conservation: Marine and Freshwater Ecosystems*, 18(2), 130-146.
- Bloch, D., & Mikkelsen, B. (2000). Preliminary estimates on seasonal abundance and food consumption of Marine Mammals in Faroese Waters. *NAMMCO WG on Marine Mammal and fisheries interactions*, 1-16.
- Bottlenose Dolphin. ORCA Ireland. https://www.orcaireland.org/bottlenose-dolphin. Accessed on 04 March 2025.
- Brotons, J. M., Grau, A. M., & Rendell, L. (2008). Estimating the impact of interactions between bottlenose dolphins and artisanal fisheries around the Balearic Islands. *Marine Mammal Science*, 24(1), 112-127.
- Caddy, J. F., & Griffiths, R. C. (1990). Recent trends in the fisheries and environment in the General Fisheries Council for the Mediterranean (GFCM) area (No. 63). Food & Agriculture Org..
- Committee on Taxonomy. (2021). List of marine mammal species and subspecies. *Society for Marine Mammalogy*. https://www.marinemammalscience.org/species-information/list-marine-mammal-species-subspecies/. Accessed date: 19 February 2025.
- Common Bottlenose Dolphin. NOAA Fisheries. https://www.fisheries.noaa.gov/species/common-bottlenose-dolphin. Accessed on 04 March 2025.
- Corsolini, S., Focardi, S., Kannan, K., Tanabe, S., Borrell, A., & Tatsukawa, R. (1995). Congener profile and toxicity assessment of polychlorinated biphenyls in dolphins, sharks and tuna collected from Italian coastal waters. *Marine Environmental Research*, 40(1), 33-53.
- Di Natale, A., & Notarbartolo di Sciara, G. (1994). A review of the passive fishing nets and trap fisheries in the Mediterranean Sea and of cetacean bycatch. *Report of the International Whaling Commission.* (Special Issue 15), 189-202.
- Dobler, J. P. (2002). Analysis of shipping patterns in the Mediterranean and Black seas. In *CIESM Workshop Monographs* (Vol. 20, pp. 19-28).
- Fortuna, C. M. (2007). Ecology and conservation of bottlenose dolphins (Tursiops truncatus) in the north-eastern Adriatic Sea (Doctoral dissertation, University of St Andrews).
- Goodall, R. N. P., Marchesi, M. C., Pimper, L. E., Dellabianca, N., Benegas, L. G., Torres, M. A., & Riccialdelli, L. (2011). Southernmost records of bottlenose dolphins, *Tursiops truncatus. Polar Biology*, *34*(7), 1085-1090.
- Halpin, L. R., Towers, J. R., & Ford, J. K. (2018). First record of common bottlenose dolphin (*Tursiops truncatus*) in Canadian Pacific waters. *Marine Biodiversity Records*, 11, 1-5.
- Janik, V. M. (2000). Whistle matching in wild bottlenose dolphins (*Tursiops truncatus*). *Science*, 289(5483), 1355-1357.
- Lahvis, G. P., Wells, R. S., Kuehl, D. W., Stewart, J. L., Rhinehart, H. L., & Via, C. S. (1995). Decreased lymphocyte responses in free-ranging bottlenose dolphins (*Tursiops truncatus*) are associated with increased concentrations of PCBs and DDT in peripheral blood. *Environmental Health Perspectives*, 103(suppl 4), 67-72.

- Leatherwood, S., & Reeves, R. R. (Eds.). (2012). The bottlenose dolphin. Elsevier.
- Lusseau, D. (2004). The hidden cost of tourism: detecting long-term effects of tourism using behavioral information. *Ecology and Society*, 9(1).
- Lusseau, D. (2005). Residency pattern of bottlenose dolphins *Tursiops* spp. in Milford Sound, New Zealand, is related to boat traffic. *Marine Ecology Progress Series*, 295, 265-272.
- Mangel, J. C., Alfaro-Shigueto, J., Van Waerebeek, K., Cáceres, C., Bearhop, S., Witt, M. J., & Godley, B. J. (2010). Small cetacean captures in Peruvian artisanal fisheries: high despite protective legislation. *Biological Conservation*, 143(1), 136-143.
- Marino, L., Connor, R. C., Fordyce, R. E., Herman, L. M., Hof, P. R., Lefebvre, L., Lusseau, D., McCowan, B., Nimchinsky, E. A., Pack, A. A., Rendell, L., Reidenberg, J. S., Reiss, D., Uhen, M. D., Van der Gucht, E., & Whitehead, H. (2007). Cetaceans have complex brains for complex cognition. *PLoS biology*, *5*(5), e139
- Marten, K., & Psarakos, S. (1994). 24 Evidence of self-awareness in the bottlenose dolphin (*Tursiops truncatus*). Self-awareness in animals and humans: Developmental perspectives, 361.
- Notarbartolo di Sciara, G., Kerem, D., Smeenk, C., Rudolph, P., Cesario, A., Costa, M., Elasar, M., Feingold, D., Fumagalli, M., Goffman, O., Hadar, N., Mebrathu, Y.T., & Scheinin, A. (2017). Cetaceans of the red sea. *CMS technical series*, *33*, 86.
- Nowacek, D. P., Thorne, L. H., Johnston, D. W., & Tyack, P. L. (2007). Responses of cetaceans to anthropogenic noise. *Mammal Review*, *37*(2), 81-115.
- Olavarría, C., Acevedo, J., Vester, H.I., Zamorano-Abramson, J., Viddi, F.A., Gibbons, J., Newcombe, E., Capella, J., Hoelzel, A.R., Flores, M., Hucke-Gaete, R., Torres-Flórez, J.P. (2010). Southernmost Distribution of Common Bottlenose Dolphins (*Tursiops truncatus*) in the Eastern South Pacific. *Aquatic Mammals* 36(3): 288-293.
- Paradell, O. G., López, B. D., & Methion, S. (2019). Modelling common dolphin (*Delphinus delphis*) coastal distribution and habitat use: insights for conservation. *Ocean & Coastal Management*, 179, 104836.
- Perrin, W. F., Würsig, B., & Thewissen, J. G. M. (Eds.). (2009). *Encyclopedia of marine mammals*. Academic Press.
- Reiss, D., & McCowan, B. (1993). Spontaneous vocal mimicry and production by bottlenose dolphins (*Tursiops truncatus*): evidence for vocal learning. *Journal of Comparative Psychology*, 107(3), 301.
- Reynolds III, J. E., Wells, R. S., & Eide, S. D. (2013). *The bottlenose dolphin: biology and conservation*. University Press of Florida.
- Richardson, W. J., Greene Jr, C. R., Malme, C. I., & Thomson, D. H. (2013). *Marine mammals and noise*. Academic press.
- Rowles, T. K., Schwacke, L. S., Wells, R. S., Saliki, J. T., Hansen, L., Hohn, A., Townsend, F., Sayre, R. A., & Hall, A. J. (2011). Evidence of susceptibility to morbillivirus infection in cetaceans from the United States. *Marine Mammal Science*, 27(1), 1-19.
- Sathasivam, K. (2000). A catalogue of Indian marine mammal records. *Blackbuck*, 16(2&3), 74pp.
- Schwacke, L. H., Voit, E. O., Hansen, L. J., Wells, R. S., Mitchum, G. B., Hohn, A. A., & Fair, P. A. (2002). Probabilistic risk assessment of reproductive effects of polychlorinated biphenyls on bottlenose dolphins (*Tursiops truncatus*) from the southeast United States coast. *Environmental Toxicology and Chemistry:* An International Journal, 21(12), 2752-2764.
- Senapati, A. (2022, November). 'In 5 days, 3 dolphins found dead in Paradip'. *The Time of India*. https://timesofindia.indiatimes.com/city/bhubaneswar/in-5-days-3-dolphins-found-dead-in-paradip/articleshow/95466412.cms.
- Senapati, A. (2024, October). 'Dolphin carcass washes ashore in Kendrapada'. *The Time of India*. https://timesofindia.indiatimes.com/city/bhubaneswar/mysterious-death-of-bottlenose-dolphin-discovered-near-bhitarkanika-national-park/articleshow/114795160.cms.

- Shirihai, H., Jarrett, B., Kirwan, G. M., Cresswell, G., Macleod, K., Walker, D., & Dando, J. (2006). *Whales, dolphins, and other marine mammals of the world*. Princeton: Princeton Univ. Press. pp. 155–158.
- Wells, R. S., & Scott, M. D. (2009). Common bottlenose dolphin: *Tursiops truncatus*. In *Encyclopedia of marine mammals* (pp. 249-255). Academic Press.
- Wells, R. S., Allen, J. B., Hofmann, S., Bassos-Hull, K., Fauquier, D. A., Barros, N. B., DeLynn, R. E., Sutton, G., Socha, V., & Scott, M. D. (2008). Consequences of injuries on survival and reproduction of common bottlenose dolphins (*Tursiops truncatus*) along the west coast of Florida. *Marine Mammal Science*, 24(4), 774-794.
- Williams, R., Gero, S., Bejder, L., Calambokidis, J., Kraus, S. D., Lusseau, D., Read, A. J., & Robbins, J. (2011). Underestimating the damage: interpreting cetacean carcass recoveries in the context of the Deepwater Horizon/BP incident. *Conservation Letters*, 4(3), 228-233.
- Wilson, B., Hammond, P. S., & Thompson, P. M. (1999). Estimating size and assessing trends in a coastal bottlenose dolphin population. *Ecological applications*, 9(1), 288-300.

Indo-Pacific Finless Porpoise

- Braulik, G. T., Ranjbar, S., Owfi, F., Aminrad, T., Mohammad, S., & Dakhteh, H. (2010). Marine mammal records from Iran. *J. Cetacean Res. Manage.*, 11(1), 49-63.
- Collins, T., Preen, A., Willson, A., Braulik, G., & Baldwin, R. M. (2005). Finless porpoise (*Neophocaena phocaenoides*) in waters of Arabia, Iran and Pakistan. *International Whaling Commission, Scientific Committee Document SC/57/SM6 Cambridge, UK*.
- Gao, A. (1991). Morphological differences and genetic variations among the populations of Neophocaena phocaenoides (Doctoral dissertation, Nanjing Normal University).
- Gao, A., & Zhou, K. (1995). Geographical variation of external measurements and three subspecies of *Neophocaena phocaenoides* in Chinese waters. *Acta Theriologica Sinica*, *15*(2), 81-92.
- Indo-Pacific Finless Porpoise. WDC. https://uk.whales.org/whales-dolphins/species-guide/indo-pacific-finless-porpoise/. Accessed on 04 March 2025.
- Jaaman, S. A., Lah-Anyi, Y. U., & Pierce, G. J. (2009). The magnitude and sustainability of marine mammal by-catch in fisheries in East Malaysia. *Journal of the Marine Biological Association of the United Kingdom*, 89(5), 907-920.
- Jefferson, T. A. (2002). Preliminary analysis of geographic variation in cranial morphometrics of the finless porpoise (*Neophocaena phocaenoides*). *The Raffles Bulletin of Zoology*, (10), 3-14.
- Jefferson, T. A., & Curry, B. E. (1994). A global review of porpoise (Cetacea: Phocoenidae) mortality in gillnets. *Biological Conservation*, 67(2), 167-183.
- Jefferson, T. A., & Hung, S. K. (2004). Neophocaena phocaenoides. Mammalian Species, (746), 1-12.
- Jefferson, T. A., & Wang, J. Y. (2011). Revision of the taxonomy of finless porpoises (genus *Neophocaena*): the existence of two species. *Journal of Marine Animals and Their Ecology*, 4(1), 3-16.
- Jefferson, T. A., Hung, S. K., Law, L., Torey, M., & Tregenza, N. (2002). Distribution and abundance of finless porpoises in Hong Kong and adjacent waters of China. *Raffles Bulletin of Zoology*, *50*, 43-56.
- Jeyabaskaran, R., Jayasankar, J., Prema, D., & Kripa, V. (2016). Enhancing the effectiveness of conservation potential of marine mammals in Indian seas. *Final Report submitted to GIZ-CMPA, CMFRI, Kochi, India. New Delhi*, 1-82.
- Jog, K., Sule, M., Bopardikar, I., Patankar, V., & Sutaria, D. (2018). Living with dolphins: Local ecological knowledge and perceptions of small cetaceans along the Sindhudurg coastline of Maharashtra, India. *Marine Mammal Science*, 34(2), 488-498.

- Kasuya, T. (1999). Finless porpoise *Neophocaena phocaenoides* (G. Cuvier, 1829). In: Handbook of Marine Mammals (Ridgway, S.H., & Harrison, R., eds.) Vol. 6: 411-442. Academic Press, London.
- Kumarran, R. P. (2012). Cetaceans and cetacean research in India. J. Cetacean Res. Manage., 12(2), 159-172.
- Minton, G., Peter, C., & Tuen, A. A. (2011). Distribution of small cetaceans in the nearshore waters of Sarawak, East Malaysia. *Raffles Bulletin of Zoology*, *59*(1).
- Nammalwar, P., Lipton, A. P., Pillai, S. K., Maheswarudu, G., Kasinathan, C., Bose, M., Ramamoorthy, N., & Thillairajan, P. (1994). Instances of finless black porpoise, *Neophocaena phocaenoides* caught in Mandapam region along the Palk Bay coast in Tamil Nadu. *Marine Fisheries Information Service, Technical and Extension Series*, 127, 16-17.
- Neophocaena phocaenoides: Marine Mammal Research and Conservation Network of India (MMRCNI). https://www.marinemammals.in/mmi/identification-guide/character-matrix-3/finless-porpoise/. Accessed on 04 March 2025.
- Parsons, E. C. M., & Jefferson, T. A. (2000). Post-mortem investigations on stranded dolphins and porpoises from Hong Kong waters. *Journal of Wildlife Diseases*, 36(2), 342-356.
- Perrin, W. F. (2002). Problems of marine mammal conservation in Southeast Asia. *Fisheries science*, 68(sup1), 238-243.
- Ponnampalam, L. S. (2012). Opportunistic observations on the distribution of cetaceans in the Malaysian South China, Sulu and Sulawesi Seas and an updated checklist of marine mammals in Malaysia. *Raffles Bulletin of Zoology*, 60(1).
- Preen, A. (2004). Distribution, abundance and conservation status of dugongs and dolphins in the southern and western Arabian Gulf. *Biological Conservation*, *118*(2), 205-218.
- Reeves, R. R. (Ed.). (2003). Dolphins, whales, and porpoises: 2002-2010 conservation action plan for the world's cetaceans (Vol. 58). IUCN.
- Reeves, R. R., Wang, J. Y., & Leatherwood, S. (1997). The finless porpoise, *Neophocaena phocaenoides* (G. Cuvier, 1829): a summary of current knowledge and recommendations for conservation action. *Asian Marine Biology*, *14*, 111-143.
- Shirakihara, M., Shirakihara, K., & Takemura, A. (1992). Records of the finless porpoise (*Neophocaena phocaenoides*) in the waters adjacent to Kanmon Pass, Japan. *Marine mammal science*, 8(1), 82-85.
- Sule, M., Bopardikar, I., Jog, K., Jamalabad, A., Panicker, D., Tregenza, N., & Sutaria, D. (2017). A review of finless porpoise, *Neophocaena phocaenoides* records from India with a special focus on the population in Sindhudurg. IWC Scientific Committee SC/67A/SM/09.
- Wang, D. (1996). A Preliminary Study on Sound and Acoustic Behavior of the Yangtze River Finless Porpoise, *Neophocaena phocaenoides*. *Acta Hydrobiologica Sinica*, 20, 133-136.
- Yang, G., Zhou, K., Xu, X., & Leatherwood, S. (1999). A survey on the incidental catches of small cetaceans in coastal waters of China. *Chinese Journal of Applied Ecology*, 10(6), 713-716.

Dugong

- Annandale, N. (1905). Notes on the species, external characteristics and habits of the dugong. Journal of the Asiatic Society of Bengal 1: 238-243.
- Batista, V. S., Fabré, N. N., Malhado, A. C., & Ladle, R. J. (2014). Tropical artisanal coastal fisheries: challenges and future directions. *Reviews in Fisheries Science & Aquaculture*, 22(1), 1-15.
- Bensam, P., & Menon, N. G. (1996). Conservation of marine mammals. In: Marine Biodiveersity: Conservation and Management. CMFRI, Cochin.
- Bryden, M., Marsh, H., & Shaughnessy, P. (1998). Dugongs, whales, dolphins and seals: a guide to the sea mammals of Australasia.

- Das, H. S., & Dey, S. C. (1999). Observations on the dugong, *Dugong dugon* (Muller), in the Andaman and Nicobar Islands, India. *Journal of the Bombay Natural History Society*, 96(2), 195-198.
- Dugong: status report and action plans for countries and territories. UNEP/Earthprint, 2002.
- Frazier, J. G., & Mundkur, T. (1990). Dugong *Dugong dugon* Muller in the Gulf of Kutch, Gujarat. *Journal of the Bombay Natural History Society*, 87(3), 368-379.
- Heinsohn, G. E., & Spain, A. V. (1974). Effects of a tropical cyclone on littoral and sub-littoral biotic communities and on a population of dugongs (*Dugong dugon* (Müller)). *Biological Conservation*, 6(2), 143-152.
- Hodgson, A. J. (2004). *Dugong behaviour and responses to human influences* (Doctoral dissertation, James Cook University).
- Husar, S. L. (1975). A review of the literature of the dugong (Dugong dugon). The American Society of Mammalogists.
- Ilangakoon, A. D., Sutaria, D., Hines, E., & Raghavan, R. (2008). Community interviews on the status of the dugong (*Dugong dugon*) in the Gulf of Mannar (India and Sri Lanka). *Marine mammal science*, 24(3).
- Maitland, R. N., Lawler, I. R., & Sheppard, J. K. (2006). Assessing the risk of boat strike on Dugongs *Dugong dugon* at Burrum Heads, Queensland, Australia. *Pacific Conservation Biology*, 12(4), 321-326.
- Marsh, H., O'Shea, T. J., & Reynolds, J. E. (2011). *Ecology and conservation of the Sirenia: dugongs and manatees*. Cambridge University Press.
- Moore, J.E., Cox, T.M., Lewison, R.L., Read, A.J., Bjorkland, R., McDonald, S.L., Crowder, L.B., Aruna, E., Ayissi, I., Espeut, P., Joynson-Hicks, C., Pilcher, N., Poonian, C. N. S., Solarin, B., & Kiszka, J. (2010). An interview-based approach to assess marine mammal and sea turtle captures in artisanal fisheries. *Biological Conservation*, 143(3), pp.795-805.
- Muir, C. E., Kiszka, J. J., & Aragones, L. (2012). Eastern African dugongs. Sirenian conservation: issues and strategies in developing countries. University Press of Florida, Gainesville, 84-90.
- Naik, P. K., Pati, G. C., Choudhury, A., & Naik, K. C. (2008). Conservation of Chilika Lake, Orissa, India. Sengupta, M. and Dalwani, R. (Eds) In the *Proceedings of Taal 2007: The 12th World Lake Conference:* 1988-1992.
- Nair, R. V., Lal Mohan, R. S., & Rao, K. S. (1975). Dugong Dugong dugon. CMFRI Bulletin, 26, 1-49.
- Pilcher, N. J., Williams, J., Hopkins, G., Hess, D., & Jaouen, L. (2017). CMS Dugong MOU standardised Dugong catch and bycatch questionnaire final report. *United Nations Environment Programme, Abu Dhabi*, 87.
- Preen, A., & Marsh, H. (1995). Response of dugongs to large-scale loss of seagrass from Hervey Bay, Queensland Australia. *Wildlife Research*, 22(4), 507-519.
- Read, A. J., Drinker, P., & Northridge, S. (2006). Bycatch of marine mammals in US and global fisheries. *Conservation biology*, 20(1), 163-169.
- Robards, M. D., & Reeves, R. R. (2011). The global extent and character of marine mammal consumption by humans: 1970–2009. *Biological Conservation*, 144(12), 2770-2786.
- Thorogood, C. A. (1990). Seagrass and cyclones in the western Gulf of Carpentaria. CSIRO Division of Fisheries, Marine Laboratories.
- Wells, S., Dwivedi, N. S., Singh, S., & Ivan, R. (1998). Marine Region 10 Central Indian Ocean.

Discussion on the presence of certain cetaceans in Tamil Nadu Waters

'Rare sighting of Blainville's beaked whales off Mangaluru coast'. (2023, January). *The Times of India*. https://timesofindia.indiatimes.com/city/goa/rare-sighting-of-blainvilles-beaked-whales-off-mluru-coast/articleshow/96746155.cms.

- Afsal, V. V., Manojkumar, P. P., Yousuf, K. S. S. M., Anoop, B., & Vivekanandan, E. (2009). The first sighting of Longman's beaked whale, *Indopacetus pacificus* in the southern Bay of Bengal. *Marine Biodiversity Records*, *2*, e133.
- Alling, A. (1986). Records of odontocetes in the northern Indian Ocean (1981-1982) and off the coast of Sri Lanka (1982-1984). *Journal of the Bombay Natural History Society. Bombay*, 83(2), 376-394.
- Anderson, R. C. (2014). Cetaceans and tuna fisheries in the Western and Central Indian Ocean. *International pole and line federation technical report*, 2, 133.
- Anderson, R. C., Clark, R., Madsen, P. T., & Johnson, C. (2006). Observations of Longman's beaked whale (*Indopacetus pacificus*) in the western Indian Ocean. *Aquatic Mammals*, 32(2), 223.
- Bianucci, G., Post, K., & Lambert, O. (2008). Beaked whale mysteries revealed by seafloor fossils trawled off South Africa. *South African Journal of Science*, 104(3), 140-3.
- Committee on Taxonomy. (2021). List of marine mammal species and subspecies. *Society for Marine Mammalogy*. https://www.marinemammalscience.org/species-information/list-marine-mammal-species-subspecies/, Accessed date: 28 February 2025
- Cooke, J. G. (2018a). Balaenoptera physalus. The IUCN Red List of Threatened Species 2018. Accessed on 06 March 2025.
- Cooke, J. G. (2018b). *Balaenoptera borealis*. The IUCN Red List of Threatened Species 2018. Accessed on 01 March 2025.
- Corbet, G. B., & Hill, J. E. (1992). *The mammals of the Indomalayan region: a systematic review* (Vol. 488). Oxford: oxford university press.
- Dudhat, S., Pande, A., Nair, A., Mondal, I., Srinivasan, M., & Sivakumar, K. (2022). Spatio-temporal analysis identifies marine mammal stranding hotspots along the Indian coastline. *Scientific reports*, 12(1), 4128.
- Ilangakoon, A. (2002). Whales & Dolphins: Sri Lanka. WHT Publications.
- Ilangakoon, A. D. (2012). A review of cetacean research and conservation in Sri Lanka. *J. Cetacean Res. Manage.*, 12(2), 177-183.
- Jefferson, T. A., & Rosenbaum, H. C. (2014). Taxonomic revision of the humpback dolphins (*Sousa* spp.), and description of a new species from Australia. *Marine Mammal Science*, 30(4), 1494-1541.
- Leatherwood, S., & Reeves, R. R. (1989). Marine mammal research and conservation in Sri Lanka, 1985-1986 (No. 1).
- Liu, M., Lin, M., Lusseau, D., & Li, S. (2021). The biogeography of group sizes in humpback dolphins (*Sousa* spp.). *Integrative zoology*, 16(4), 527-537.
- Parra, G. J., & Jefferson, T. A. (2018). Humpback dolphins: *Sousa teuszii*, *S. plumbea*, *S. chinensis* and *S. sahulensis*. In *Encyclopedia of marine mammals* (pp. 483-489). Academic Press.
- Sathasivam, K. (2000). A catalogue of Indian marine mammal records. *Blackbuck*, 16(2&3), 74pp.

Common Threats and Conservative Efforts

- Abramson, L., Polefka, S., Hastings, S., & Bor, K. (2011). Reducing the threat of ship strikes on large cetaceans in the Santa barbara channel region and Channel Islands national marine sanctuary.
- Barkin, D., & Bouchez, C. P. (2002). NGO-community collaboration for ecotourism: A strategy for sustainable regional development. *Current issues in Tourism*, *5*(3-4), 245-253.
- Birtles, A., Curnock, M., Dobbs, K., Smyth, D., Arnold, P., Marsh, H., Valentine, P., Limpus, C., Hyams, W., Dunstan, A., Charles, D., Gatley, C., Mangott, A., Miller, D., Hodgson, A., Emerick, S., & Kendrick, A. (2005). Code of Practice for the Sustainable Management of Dugong and Marine Turtle Tourism in Australia.

- Briscoe, D. K., Hiatt, S., Lewison, R., & Hines, E. (2014). Modeling habitat and bycatch risk for dugongs in Sabah, Malaysia. *Endangered Species Research*, 24(3), 237-247.
- Brotons, J. M., Grau, A. M., & Rendell, L. (2008). Estimating the impact of interactions between bottlenose dolphins and artisanal fisheries around the Balearic Islands. *Marine Mammal Science*, 24(1), 112-127.
- Cates, K., Demaster, D. P., Brownell Jr, R. L., Silber, G., Gende, S., Leaper, R., Ritter, F., & Panigada, S. (2017). Strategic plan to mitigate the impacts of ship strikes on cetacean populations: 2017-2020. *IWC*.
- Clapham, P. J., & Baker, C. S. (2018). Whaling, modern. In *Encyclopedia of marine mammals* (pp. 1070-1074). Academic Press.
- Curtin, R., & Prellezo, R. (2010). Understanding marine ecosystem based management: a literature review. *Marine policy*, 34(5), 821-830.
- Das, A. (2019). Acoustic Habitat Degradation Due to Shipping in the Indian Ocean Region. In *Changing Ecosystems and Their Services*. IntechOpen.
- Dhandapani, P. (2012). Project Dugong: A Conservation Strategy To Prevent Extirpation Of The Species From Indian Seas. *Recent Advances in Biodiversity of India*, 501-502, 2012.
- Dodampahala, S. K. (2023). Importance of Seagrass Restoration to Uplift Small-Scale Coastal Fisheries in Sri Lanka. *Multisectoral Approaches to Accelerate Economic Transformation in the Face of Crisis in Sri Lanka*, 162.
- Edward, J. P., Raj, K. D., Mathews, G., Kumar, P. D., Arasamuthu, A., D'Souza, N., & Bilgi, D. S. (2019). Seagrass restoration in Gulf of Mannar, Tamil Nadu, Southeast India: a viable management tool. *Environmental monitoring and assessment*, 191, 1-14.
- García, M. V., Camargo, A. J. C., & Rivas, M. L. (2024). Bycatch mitigation of endangered marine life. *bioRxiv*, 2024-02.
- Gilman, E. L. (2011). Bycatch governance and best practice mitigation technology in global tuna fisheries. *Marine Policy*, 35(5), 590-609.
- Grip, K., & Blomqvist, S. (2020). Marine nature conservation and conflicts with fisheries. *Ambio*, 49(7), 1328-1340.
- Gullett, W. (2022). Tackling anthropogenic underwater noise through the Convention on Biological Diversity: Progress and future development. *Marine Policy*, *146*, 105293.
- Gunasekaran, K., Mghili, B., Bottari, T., Mancuso, M., & Machendiranathan, M. (2024). Ghost fishing gear threatening aquatic biodiversity in India. *Biological Conservation*, 291, 110514.
- Gupta, A. K., Gupta, S. K., & Patil, R. S. (2005). Environmental management plan for port and harbour projects. *Clean Technologies and Environmental Policy*, 7, 133-141.
- Hamilton, S., & Baker, G. B. (2019). Technical mitigation to reduce marine mammal bycatch and entanglement in commercial fishing gear: lessons learnt and future directions. *Reviews in Fish Biology and Fisheries*, 29, 223-247.
- Havemann, P., & Smith, R. (2007). Desktop Review: Current Legislation and Policy Conducive to Sustainable Community Management of Dugong and Turtle Traditional Fisheries in the Torres Strait.
- Hawkes, L. A., Broderick, A. C., Godfrey, M. H., & Godley, B. J. (2009). Climate change and marine turtles. *Endangered Species Research*, 7(2), 137-154.
- Hilborn, R., & Hilborn, U. (2019). Ocean Recovery: A sustainable future for global fisheries?. Oxford University Press.
- Hilty, J., Worboys, G. L., Keeley, A., Woodley, S., Lausche, B. J., Locke, H., Carr, M., Pulsford, I., Pittock, J., White, J. W., Theobald, D. M., Levine, J., Reuling, M., Watson, J. E. M., Ament, R., & Tabor, G. M. (2020). Guidelines for conserving connectivity through ecological networks and corridors.
- Hobday, A. J., Chambers, L. E., & Arnould, J. P. (2015). Prioritizing climate change adaptation options for iconic marine species. *Biodiversity and Conservation*, *24*, 3449-3468.

- Hodgson, A. J., Marsh, H., Delean, S., & Marcus, L. (2007). Is attempting to change marine mammal behaviour a generic solution to the bycatch problem? A dugong case study. *Animal Conservation*, 10(2), 263-273.
- Honey, M. (2008). Setting standards: certification programmes for ecotourism and sustainable tourism. In *Ecotourism and Conservation in the Americas* (pp. 234-261). Wallingford UK: CABI.
- Hoyt, E. (2009). Whale watching. In Encyclopedia of marine mammals (pp. 1223-1227). Academic Press.
- Huntington, H. P., Daniel, R., Hartsig, A., Harun, K., Heiman, M., Meehan, R., Noongwook, G., Pearson, L., Prior-Parks, M., Robards, M., & Stetson, G. (2015). Vessels, risks, and rules: Planning for safe shipping in Bering Strait. *Marine Policy*, 51, 119-127.
- Infantina, J. A., Jayaraman, R., Umamaheswari, T., Viswanatha, B. S., & Ranjith, L. (2016). Governance of marine fisheries in India: Special reference to Tamil Nadu.
- International Quiet Ocean Experiment (IQOE). (2020). Scientific Plan for the International Quiet Ocean Experiment (IQOE), Acoustic Data Portal. https://igoe.org/acoustic-data-portal.
- International Whaling Commission (IWC). *Total Catches*. https://iwc.int/total-catches. Retrieved on 03 March 2025.
- Islam, M. Z. (2024). Ocean wildlife and megafauna protection. In *The Blue Book: Smart sustainable coastal cities and blue growth strategies for marine and maritime environments* (pp. 15-33). Cham: Springer International Publishing.
- Jagtap, T. G., Komarpant, D. S., & Rodrigues, R. S. (2003). Status of a seagrass ecosystem: an ecologically sensitive wetland habitat from India. *Wetlands*, 23(1), 161-170.
- Jambeck, J. R., Geyer, R., Wilcox, C., Siegler, T. R., Perryman, M., Andrady, A., Narayan, R., & Law, K. L. (2015). Plastic waste inputs from land into the ocean. *science*, 347(6223), 768-771.
- Jeftic, L., Sheavly, S., & Adler, E. (2009). Marine Litter: A Global Challenge. Nairobi: UNEP. 232 pp.
- Joshi, K. K., Varsha, M. S., & Sruthy, V. L. (2015). Marine biodiversity of India-status and challenges.
- Khan, F., & Varshney, M. M. (2024). Sustainable developmental goals: review of Indian perspective. *Journal of Social Review and Development*, 3(Special 1), 84-87.
- Kibria, M. G., Masuk, N. I., Safayet, R., Nguyen, H. Q., & Mourshed, M. (2023). Plastic waste: challenges and opportunities to mitigate pollution and effective management. *International Journal of Environmental Research*, 17(1), 20.
- Leaper, R. C., & Renilson, M. R. (2012). A review of practical methods for reducing underwater noise pollution from large commercial vessels. *International Journal of Maritime Engineering*, 154(A2).
- Link, J. S. (2021). Evidence of ecosystem overfishing in US large marine ecosystems. *ICES Journal of Marine Science*, 78(9), 3176-3201.
- Magesh, N. S., & Krishnakumar, S. (2019). The Gulf of Mannar marine biosphere reserve, southern India. In *World seas: an environmental evaluation* (pp. 169-184). Academic Press.
- Marsh, H., Albouy, C., Arraut, E., Castelblanco-Martínez, D. N., Collier, C., Edwards, H., James, C., & Keith–Diagne, L. (2022). How might climate change affect the ethology and behavioral ecology of dugongs and manatees? In *Ethology and behavioral ecology of Sirenia* (pp. 351-406). Cham: Springer International Publishing.
- Marsh, H., Arraut, E. M., Diagne, L. K., Edwards, H., & Marmontel, M. (2017). Impact of climate change and loss of habitat on sirenians. *Marine mammal welfare: human induced change in the marine environment and its impacts on marine mammal welfare*, 333-357.
- Marsh, H., O'Shea, T. J., & Reynolds, J. E. (2011). *Ecology and conservation of the Sirenia: dugongs and manatees*. Cambridge University Press.
- Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, O., Yu, R., & Zhou, B. (2021). Climate change 2021: the physical science basis. *Contribution of*

- working group I to the sixth assessment report of the intergovernmental panel on climate change, 2(1), 2391
- Nammalwar, P., Gowri, V. S., & Satheesh, S. (2013). Marine biodiversity conservation and management in India. *Ecology and Conservation of Tropical Marine Faunal Communities*, 433-449.
- Narra, S., Shettigondahalli Ekanthalu, V., Antwi, E., & Nelles, M. (2022). Effects of marine littering and sustainable measures to reduce marine pollution in India. In *Handbook of solid waste management:* Sustainability through circular economy (pp. 1375-1406). Singapore: Springer Nature Singapore.
- Nayak, S. (2017). Coastal zone management in India—present status and future needs. *Geo-spatial information science*, 20(2), 174-183.
- Panyawai, J., & Prathep, A. (2022). A systematic review of the status, knowledge, and research gaps of dugong in Southeast Asia. *Aquatic Mammals*, 48(3), 203-222.
- Parsons, E. C. M., & Rose, N. A. (2022). The history of cetacean hunting and changing attitudes to whales and dolphins. In *Marine Mammals: the Evolving Human Factor* (pp. 219-254). Cham: Springer International Publishing.
- Piniak, W. E. D. (2012). Acoustic ecology of sea turtles: Implications for conservation (Doctoral dissertation, Duke University).
- Poloczanska, E. S., Limpus, C. J., & Hays, G. C. (2009). Vulnerability of marine turtles to climate change. *Advances in marine biology*, *56*, 151-211.
- Pörtner, H. O., Roberts, D. C., Masson-Delmotte, V., Zhai, P., Tignor, M., Poloczanska, E., & Weyer, N. M. (2019). The ocean and cryosphere in a changing climate. *IPCC special report on the ocean and cryosphere in a changing climate*, *1155*, 10-1017.
- Rajmohan, K. V. S., Ramya, C., Viswanathan, M. R., & Varjani, S. (2019). Plastic pollutants: effective waste management for pollution control and abatement. *Current Opinion in Environmental Science & Health*, 12, 72-84.
- Rako-Gospić, N., & Picciulin, M. (2023). Addressing underwater noise: Joint efforts and progress on its global governance. *Advances in Marine Biology*, *94*, 201-232.
- Reeves, R. R. (2002). The origins and character of 'aboriginal subsistence' whaling: a global review. *Mammal Review*, 32(2), 71-106.
- Robinson, J. G. (2006). Conservation biology and real-world conservation. *Conservation Biology*, 20(3), 658-669.
- Sacchi, J. (2021). Overview of mitigation measures to reduce the incidental catch of vulnerable species in fisheries.
- Samuel, Y., Morreale, S. J., Clark, C. W., Greene, C. H., & Richmond, M. E. (2005). Underwater, low-frequency noise in a coastal sea turtle habitat. *The Journal of the Acoustical Society of America*, 117(3), 1465-1472.
- Sasipriyan, P., Shameer, T. T., & Manimozhi, A. (2024). Compendium of species recovery plan with species focus on marine species-2024. Project Completion Report. Submitted to Tamil Nadu Biodiversity Conservation and Greening Project for Climate Change Response (TBGPCCR). Advanced Institute for Wildlife Conservation (Research, Training and Education), Vandalur, 76.
- Schumann, N., Gales, N. J., Harcourt, R. G., & Arnould, J. P. (2013). Impacts of climate change on Australian marine mammals. *Australian Journal of Zoology*, *61*(2), 146-159.
- Seth, P. K. (2014). Chemical contaminants in water and associated health hazards. Water and Health, 375-384.
- Silas, E. G., & Fernando, A. B. (1988). The Dugong in India-is it going the way of the Dodo.
- Sivakumar, K., & Nair, A. (2013). Dugong Distribution, Habitat and Risks Due to Fisheries and Other Anthropogenic Activities in India. Wildlife Institute of India–Technical Report. 74 pp.
- Thomas, S. N., Sandhya, K. M., & Edwin, L. (2022). Incidental Catch of Marine Mammals and Turtles in Gillnets: Indian Scenario. *Fishery Technology*, *59*, 1-18.

Tønnessen, J. N., & Johnsen, A. O. (1982). The history of modern whaling. Univ of California Press.

United Nations Office on Drugs and Crime (UNODC). (2021). World Wildlife Crime Report 2020.

van Veghel, I. (2019). Minimizing the impact of (eco) tourism on marine life.

Verma, J., Pant, H., Sign, S., & Tiwari, A. (2020). Marine pollution, sources, effect and management. *Three Major Dimensions of Life: Environment, Agriculture and Health; Society of Biological Sciences and Rural Development: Prayagraj, India*, 270-276.

Vivekanandan, E., Jeyabaskaran, R., Yousuf, K. S. S. M., Anoop, B., Abhilash, K. S., & Rajagopalan, M. (2010). Marine mammal research and conservation in India. *CMFRI Pamphlet*, (13/201), 1-20.

Weilgart, L. S. (2007). A brief review of known effects of noise on marine mammals. *International Journal of Comparative Psychology*, 20(2).

Wernberg, T., Thomsen, M. S., Baum, J. K., Bishop, M. J., Bruno, J. F., Coleman, M. A., Filbee-Dexter, K., Gagnon, K., He, Q., Murdiyarso, D., Rogers, K., Silliman, B. R., Smale, D. A., Starko, S., & Vanderklift, M. A. (2024). Impacts of climate change on marine foundation species. *Annual review of marine science*, *16*(1), 247-282.

Wright, A. J., Simmonds, M. P., & Galletti Vernazzani, B. (2016). The international whaling commission—beyond whaling. *Frontiers in Marine Science*, *3*, 158.

Zutshi, B., & Prasad, S. R. (2008). Impact of pollution on fresh-and marine water resources-A review. *Pollution Research*, 27(3), 461-466.

Marine Conservation Frameworks: Global To Regional

Barcelona Convention (https://www.unep.org/unepmap/who-we-are/barcelona-convention-and-protocols)

Biodiversity Beyond National Jurisdiction (https://www.un.org/bbnjagreement/en)

Biological Diversity Act (2002) (http://nbaindia.org/uploaded/pdf/BDAct 2023.pdf)

Centre for Marine Living Resources and Ecology (CMLRE) (https://www.cmlre.gov.in/)

Coast Guard Act (1978) (https://www.mod.gov.in/sites/default/files/Coast%20Guard%20Act%2C%201978.pdf)

Coastal Regulation Zone Notification (2019)

(https://environment.tn.gov.in/assets/crz/b4ec58b933db7721e5a5f7473cf28f3a.pdf)

Convention on Biological Diversity (https://www.cbd.int/)

Convention on International Trade in Endangered Species of Wild Fauna and Flora (https://cites.org/eng)

Convention on Migratory Species of Wild Animals (https://www.cms.int/)

Dugong Conservation Reserve (https://cms.tn.gov.in/cms_migrated/document/GO/envfor_e_165_ms_2022.pdf)

Environment (Protection) Act (1986)

(https://www.indiacode.nic.in/bitstream/123456789/4316/1/ep_act_1986.pdf)

Environmental Protection Agency (https://www.epa.gov/)

Gulf of Mannar Marine National Park (https://tnswa.org/gulf-of-mannar)

Indian Forest Act (1927)

(http://nbaindia.org/uploaded/Biodiversityindia/Legal/3.%20Indian%20forest%20act.pdf)

Integrated Development of Wildlife Habitat (IDWH) (https://moef.gov.in/wildlife)

International Convention for the Prevention of Pollution from Ships

 $\label{lem:convention} $$ \frac{\text{(https://www.imo.org/en/about/Conventions/Pages/International-Convention-for-the-Prevention-of-Pollution-from-Ships-(MARPOL).aspx)} $$$

International Whaling Commission (https://iwc.int/en/)

List of Important Coastal and Marine Biodiversity Areas (ICMBA) in India (https://wiienvis.nic.in/Database/ICMBAs_8247.aspx)

Marine Elite Force in Ramanathapuram

(https://cms.tn.gov.in/cms_migrated/document/press_release/pr080324_e_507.pdf)

Marine Mammal Protection Act

(https://www.fisheries.noaa.gov/national/marine-mammal-protection/marine-mammal-protection-act)

Marine Protection, Research and Sanctuaries Act

(https://www.epa.gov/enforcement/marine-protection-research-and-sanctuaries-act-mprsa-and-federal-facilities)

Ministry of Earth Sciences (MoES) (https://www.moes.gov.in/)

Ministry of Environment, Forest and Climate Change (MoEFCC) (https://moef.gov.in/)

National Coastal Zone Management Authority (NCZMA) (https://czmp.ncscm.res.in/)

Oslo-Paris (OSPAR) Convention (https://www.ospar.org/convention)

Project Dolphin (https://riverdolphin.in/)

Tamil Nadu Coastal Restoration Mission

(https://environment.tn.gov.in/assets/go/1568b4806aac1e6c0aaacf96ea73239a.pdf)

Tamil Nadu Forest Department (https://www.forests.tn.gov.in/)

Tamil Nadu Marine Fishing Regulation Act (1983)

(https://smallscalefishworkers.org/wp-content/uploads/2019/01/Tamil-Nadu-Marine-Fishing-Regulation-Act.pdf)

Tamil Nadu State Fisheries Department (https://www.fisheries.tn.gov.in/)

Tamil Nadu State Forest Policy (2018)

(https://cms.tn.gov.in/cms_migrated/document/docfiles/forest_policy_2018.pdf)

Territorial Waters, Continental Shelf, Exclusive Economic Zone and other Maritime Zones Act (1976) (https://www.indiacode.nic.in/bitstream/123456789/1484/2/A1976-80.pdf)

The Wild Life (Protection) Act, 1972, 2023 Edition

(https://www.indiacode.nic.in/bitstream/123456789/1726/1/a1972-53.pdf)

United Nations Convention on the Law of the Sea (https://www.unclos.org/)

Comprehensive Guide to Marine Megafauna Stranding Response

National Oceanic and Atmospheric Administration (NOAA). Understanding Marine Wildlife Stranding and Response. Retrieved from

https://www.fisheries.noaa.gov/insight/understanding-marine-wildlife-stranding-and-response

Data Collection Sources

Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES) Checklist (https://checklist.cites.org/)

iNaturalist (https://www.inaturalist.org/)

International Union for Conservation of Nature and Natural Resources (IUCN) Red List (https://www.iucnredlist.org/)

International Whaling Commission (IWC) - Whale Watching Handbook (https://wwhandbook.iwc.int/en/)

Kamalakannan, M., & Nameer, P. O. (2020). *JoTT Checklist of the mammals of Tamil Nadu* (v1.0), 10 February 2020.

Kepler.gl (https://kepler.gl/)

Marine Mammal Research and Conservation Network of India (MMRCNI) (https://www.marinemammals.in/)

Menon, V. (2023). Indian mammals: a field guide. Hachette India.

National Ocean and Atmospheric Administration (NOAA) Fisheries (https://www.fisheries.noaa.gov/)

Ocean Biodiversity Information System (OBIS) (https://obis.org/)

Ocean Research & Conservation Association (ORCA) Ireland (https://www.orcaireland.org/)

Sathasivam, K. (2000). A catalogue of Indian marine mammal records. *Blackbuck*, 16(2&3), 74pp.

The Society for Marine Mammalogy - List of Marine Mammal Species and Subspecies (https://marinemammalscience.org/science-and-publications/list-marine-mammal-species-subspecies/)

The Wild Life (Protection) Act, 1972, 2023 Edition (https://www.indiacode.nic.in/bitstream/123456789/1726/1/a1972-53.pdf)

Whale and Dolphin Conservation (WDC) (https://uk.whales.org/)

Wikimedia Commons (https://commons.wikimedia.org/wiki/)

World Register of Marine Species (WoRMS) (https://www.marinespecies.org/)